
Reducing Memory in Software-Based Thread-Level
Speculation for JavaScript Virtual Machine

Execution of Web Applications

Abstract—Thread-Level Speculation has been used to take
advantage of multicore processors in virtual execution environ-
ments for the sequential JavaScript scripting language. While
the results are promising the memory overhead has so far been
high. In this paper, we make the following contributions: (i)
We propose to reduce memory usage by limiting the checkpoint
depth, (ii) we present an in-depth study of the effects of limiting
the checkpoint depth in Thread-Level Speculation, and (iii)
we propose an adaptive heuristic to dynamically adjust the
number of checkpoints. We evaluate our techniques using 15
web applications on an 8-core computer. The results show that
we reduce the memory overhead for Thread-Level Speculation by
over 90% as compared to storing all checkpoints. At the same
time, the performance is often better than when we store all
checkpoints and at worst 4% slower.

I. INTRODUCTION

JavaScript is a dynamically typed, object-based scripting
language with run-time evaluation used extensively in web
applications, where the execution is done in a JavaScript engine
such as Mozilla Spidermonkey [1]. Google [2] has suggested
Just-in-time compilation (JIT) to decrease the execution time in
JavaScript. However, Google’s JavaScript engine V8’s decrease
in execution time has been measured on a set of benchmarks,
which Ratanaworabhan et al. [3] show are unrepresentative
for real-world web applications. Martinsen et al. [4] show
the dramatic effect of this as JIT speeds up the execution
of benchmarks, but often slows down the execution time in
popular web applications.

JavaScript is a sequential scripting language and cannot
take advantage of multicore processors to reduce the execution
time. Fortuna et al. [5] show that there exists a significant
potential for parallelism in many web applications with an
estimated speedup of up to 45× compared to a sequential
execution.

To hide the details of the underlying parallel hardware,
we can dynamically extract parallelism from a sequential
program using Thread-Level Speculation (TLS). Mehrara et al.
show the performance potential of TLS in the SpiderMonkey
JavaScript engine on a series of well-known benchmarks [6]
and Martinsen et al. [7] show this on a number of popular web
applications. However, while prior results show that TLS can
significantly speed up the execution time in web applications,
it uses over 1500 MB of memory.

We propose to reduce the memory overhead in TLS by
being selective on when we store the checkpoints before we
speculate. Martinsen et al. [7] show that less than 1.8% of all
the speculations result in a rollback. However, if we choose to

store the checkpoint far away from the rollback, the number
of bytecode instructions that need to be re-executed increases.
Martinsen et al. [8] show that nested speculation is necessary
to decrease the execution time; therefore we investigate the
effects on memory usage and execution time of not storing
the checkpoints at all speculation depths. Further, we propose
an adaptive heuristic that dynamically adjusts when we store
the checkpoints depending on the speculation depth and the
number of rollbacks.

We show that we can reduce the memory usage in TLS by
nearly 90% by limiting at what speculation depth we store the
checkpoint, and in several cases also improve the execution
time. Based on these findings, we develop and evaluate an
adaptive heuristic, which reduces the memory usage by over
90% and has an execution speed close to the results of
Martinsen et al.

Our main contributions are:

• Reducing the memory requirements of software-based
TLS in JavaScript by only storing a limited number
of checkpoints.

• An in-depth study of the effects of limiting the number
of checkpoints for a TLS in JavaScript.

• An adaptive heuristic which significantly reduces the
memory usage for TLS and improves the execution
time.

This paper is organized as follows; in Section II, we
introduce JavaScript, web applications and TLS. In Section III,
we present the TLS implementation used in our study. In
Section IV we present our approaches to reducing the memory
usage in TLS. In Section V, we present the experimental
methodology, while in Section VI and Section VII we evaluate
the effects of a fixed number of checkpoints and the adaptive
heuristic. Finally, in Section VIII we conclude our findings.

II. BACKGROUND AND RELATED WORK

A. JavaScript and web applications

JavaScript is a dynamically typed, object-based scripting
language with run-time evaluation used in web applications.
JavaScripts performance has reached a high single-thread per-
formance on a set of benchmarks. Ratanaworabhan et al. [3]
show that the results from these benchmarks are misleading
for the execution behavior of web applications and Martinsen
et al. [7] show that optimizing towards the characteristics of
the benchmarks slows down the web applications.



Web applications manipulate parts that are not accessible
from a JavaScript engine. The scripted functionality is executed
in a JavaScript engine, but the program flow is defined in the
web application. Richards et al. [9] show that web applications
use JavaScript specific features extensively such that various
parts of the program are defined at run-time.

A key concept in web applications is the Document Object
Model (DOM). DOM is an interface that allows programs
and scripts to dynamically access and update the content of
documents. The document can be further processed and the
results can be incorporated back into the presented page. The
programmer can modify, create, or delete elements and content
in the web applications through the DOM tree with JavaScript.

B. Thread-Level Speculation principles

Picket and Verbrugge’s [10] TLS approach is to allocate
each function call in software as a thread. Then, they can
(ideally) execute as many function calls in parallel as they
have processors. However data dependencies and return values
limits the number of function calls that can be executed in par-
allel. Martinsen et al. [7] show that the memory requirements
and Rudberg et al. [11] show that the run-time overhead for
detecting data dependencies can be considerable.

Between two functions we can have three types of
data dependencies: Read-After-Write (RAW), Write-After-Read
(WAR), and Write-After-Write (WAW). A TLS implementation
must be able to detect these dependencies during run-time
using information about read and write addresses from each
function call. A design parameter for TLS is the precision of
at what granularity of true-positive / (true-positives + false-
positives) data dependency violations are detected.

When a data dependency violation is detected, the exe-
cution must be rolled back to a safe point in the execution.
Thus, all TLS systems need a rollback mechanism. In order
to be able to do rollbacks, we need to store both speculative
updates of data as well as the original data values. The book-
keeping results in both a memory overhead as well as a run-
time overhead. In order for TLS to be fast, the number of
rollbacks should be low.

The more precise tracking of data dependencies, the larger
memory overhead is required. One effect of imprecise depen-
dence detection is the risk of a false-positive violation, i.e.,
when a dependence violation is detected when no actual (true-
positive) dependence violation is present. As a result, unnec-
essary rollbacks are done, which increase the execution time.
TLS implementations differ depending on whether they update
data speculatively ’in-place’, i.e., moving the old value to a
buffer and writing the new value directly, or in a speculation
buffer.

C. Thread-Level Speculation in JavaScript and for web appli-
cations

Mehrara and Mahlke [12] target trace-based JIT-compiled
JavaScript code, where the most common execution flow is
compiled into an execution trace. Run-time checks (guards)
are inserted to check whether control flow etc. is still valid for
the trace or not. They execute the run-time checks (guards)
in parallel with the main execute flow (trace), and have one
single main execution flow.

Mehrara et al. [6] introduce a lightweight speculation
mechanism that focuses on loop-like constructs in JavaScript.
As this code uses the trace feature of Spidermonkey, a selective
form of speculation is employed.

Mickens et al. [13] suggest an event-based speculation
mechanism which is deployed as a JavaScript library (Crom)
which clones certain regions of the JavaScript code that are
executed speculatively.

Martinsen et al’s [7] approach is to execute the main
execution flow in parallel which they evaluate on popular
web applications and show that there is a significant potential
for TLS in web applications. Figure 1 shows that Just-in-
time compilation (JIT) increases the execution time of web
applications as compared to interpretive execution, and shows
that neither the Squirrelfish or V8 JavaScript engine improves
execution time for JavaScript in web applications with JIT.
They also show that nested TLS is necessary in order to
improve the execution time with TLS.

Fig. 1. Speedup of Thread-Level Speculation and Just-in-time compilation
for a number of popular web applications. The black horizontal line is the
sequential execution time of Squirrelfish without Thread-Level Speculation
(the figure is used with permission from the authors of [7]).

Martinsen et al. [14] suggest three heuristics for re-
speculation on previous mis-speculations. Their conclusion
is that the overall problem with TLS in JavaScript for web
applications is not the number of rollbacks but the memory
usage.

Martinsen et al. [8] show that by limiting the number of
threads, the amount of memory, and the speculation depth we
both save memory and improve the execution time. In many
cases a speculation depth of 2 to 4 is sufficient to improve the
performance because of the nature of JavaScript execution in
web applications. JavaScript execution in web applications as
events are restricted to be executed for no more than half a
minute. This indicates the lack of large loop structures, which
again reduces the effect of JIT.

In summary, Martinsen et al’s [7] over 1500 MB memory
usage in TLS is a concern. We have not found any studies
that look at reducing the memory overhead of TLS in web
applications by being restrictive on when we store checkpoints.

III. TLS IMPLEMENTATION FOR JAVASCRIPT

Martinsen et al. [7] implemented TLS in the Squirrelfish
JavaScript engine. The speculation is done on JavaScript func-



tions in a nested manner, including return value prediction, and
all data conflicts are detected at run-time. When a conflict is
detected, a rollback is performed. We extend Martinsen et al.’s
implementation with a mechanisms to limiting the number of
checkpoints, and use it for the measurement and the analysis.

The execution in Squirrelfish is divided into two; first the
JavaScript code is compiled into bytecode instructions, then
the bytecode instructions are executed. We extract the bytecode
instructions which are to be executed, and the execution trace
of a sequential execution of the bytecode instructions. We use
this to validate the correctness of the speculative execution off-
line. We initialize a counter realtime to 0. For each executed
bytecode instruction, the value of realtime is increased by 1.
We give the function call a unique id (p realtime)

When we execute a op call bytecode instruction we extract
the realtime value and the id of the speculated function that
makes this function call, e.g., p 0220 (a function is called after
220 bytecode instructions from p 0). In Figure 2 the value of
the position of this function call emulates the sequential execu-
tion order for TLS. This is possible in web applications since
there is going to be a large number of JavaScript function calls.
We check if this function previously has been speculated by
looking up the value of previous[function order]. previous is
a vector where each element is indexed by the function order.
If the value is 1, then the function has been speculated
unsuccessfully. If not, this function call is a candidate for
speculation.

Fig. 2. We use the order that the functions are called in, to determine the order
in which the program would have been sequentially executed. This works in
JavaScript in a web applications setting, as there are multiple function calls.
For instance, in a simplified example the JavaScript function f0, performs 3
function calls, f01, f02 and f03. f01 performs two function calls, f011 and
f012. Thus, we have created a speculation tree from the function calls. If we
traverse this tree from left to right, we get an order in which the functions are
called, equal to the order in which the functions would be sequentially called,
in order to uphold the sequential semantics during execution with TLS. More
specific: f0 at time p 1, f01 at time p 2, f011 at time p 3, f012 at time p 4,
f02 at time p 5, and f03 at time p 6. We denote how each function is ordered
as function order

Then we do the following; we set the position of the
function call’s previous[function order] = 1. We save the state
which contains the list of previously modified global values,
the list of states from each thread, the content of the variables
in the JavaScript engine, and the content of previous.

We create a new thread for the function with a unique id.
We copy the value of realtime from its parent and modify the
state of the parent such that the current instruction is changed
from the position of the op call bytecode instruction to the
position of the associated op ret bytecode instruction.

We have two functions executing as concurrent threads,
and this process is repeated each time a op call bytecode

instruction is encountered, thereby allowing nested speculation.
For correct speculative execution, we check for write and read
conflicts between global variables, object property id names,
unsuccessful return value predictions of function calls, and
whether we write to the DOM tree. If a conflict occurs, we
perform a rollback. When a speculative function encounters
op ret, modifications of global variables and object property
ids are committed back to their parent thread. However the
commit cannot be completed before its speculative function
calls return.

IV. REDUCING THE MEMORY USAGE FOR TLS

A. Motivation for limiting the checkpoint depth

In nested TLS, we store a checkpoint before we spec-
ulatively execute a function. The checkpoint is used if we
mis-speculate and need to perform a rollback, e.g., due to a
data conflict. However, when the speculation is correct, then
the stored checkpoint is removed when we commit back to
it’s parent thread. Martinsen et al. [7] show that 1.8% of the
speculations result in a rollback, therefore most checkpoints
are never used. The number in the parenthesis in Figure 6
shows that the memory usage can be 1527 MB for TLS.

Martinsen at al. [8] show that nested speculation is nec-
essary to reduce the execution time, and that the speculation
depth for 85% of all functions is between 2 and 4. Therefore,
most rollbacks occur between depth 2 and 4, and as a result,
it could be more meaningful to store the checkpoints below
these depths as we expect a rollback at such a depth.

B. Fixed checkpoint depth limit

When a speculatively executed function makes a specula-
tive function call, the depth of the speculated function is the
caller’s depth+1. The checkpoint of a speculative function is
saved at a checkpoint depth equal to the depth of the function
speculated. When we make the first speculation, the checkpoint
is stored at checkpoint depth = 1.

Our idea is to limit the checkpoint depths were we store
the checkpoints, but still allow an unlimited speculation depth.
Normally, in case of a rollback we would go back to the caller
function’s parent checkpoint. In our approach, we suggest to
only store checkpoints at a certain checkpoint depth.

Before a speculation, a predefined checkpoint depth limit is
compared to the function’s checkpoint depth. If the checkpoint
depth is equal or below the checkpoint depth limit, we store the
checkpoint. If the value of the checkpoint depth is higher than
the checkpoint depth limit, we do not store the checkpoint,
instead, on rollbacks we go to the previous stored checkpoint.
This reduces the memory as we store a lower number of
checkpoints, but this also means that rollbacks require a larger
number of bytecode instructions to be re-executed. An example
is shown in Figure 3.

C. An adaptive heuristic

A fixed checkpoint depth limit does not adapt to functions
speculatively executing at different depths and rollbacks. We
would like to store less checkpoints to reduce memory usage,
but this makes rollbacks take more time. We therefore propose
an adaptive heuristic that dynamically adjusts the checkpoint



Fig. 3. Before we speculatively execute a function at (i), we save the state
so we can rollback to this point. At (ii), i.e., the speculative function made
as a speculative function call at (i), we speculatively execute another function
call (iii). In normal TLS, we also save the state in (ii) in case of a rollback. In
our proposal, we do not store the state at checkpoint in (ii) if the checkpoint
depth is set to 1. If a rollback occurs in (iii), we would normally rollback to
(ii). However, in our proposal we would rollback to (i). As a result, we do not
need to store the checkpointed state in (ii), with the cost of doing a rollback
back to (i) instead of to (ii).

depth limit based on the speculation depth and rollback behav-
ior of a web application.

The heuristic in Listing 1 speeds up the execution time
up to 8× and reduces the memory usage by over 90%, by
being selective at which checkpoint depth limit we store the
checkpoints. Martinsen et al. [7] show that as the speculation
depth increases we have more rollbacks. If a rollback occurs,
we want to reduce the number of bytecode instructions that
needs to be re-executed. Martinsen et al. [7] show that roll-
backs are rare, but that they often occur between speculative
functions with the same depth and occur closely after each
other. Therefore, when a rollback occurs, we want to increase
the limit to ensure that the number of re-executing bytecode
instructions is reduced for preceding rollbacks.

Listing 1. Since we are using nested speculation, each thread has a depth.
First we go through all the threads executing and place their depth in a list
l. In the next stage, we sort the list l ascending. Initially we set a variable
m to 0.5. The value m is increased to m = m + 1.0 / pow(2, no rollback +
1) if there is a rollback. Therefore, after the first rollback m would be 0.75,
after the second rollback m would be 0.825, etc. We pick the element a from
l[m×length of l], if the depth of the function we are about to speculate on
is lower than a, we save the state. If not, we make sure that, in case of a
rollback, we rollback to the last checkpoint were the state was saved. If the
length of l is lower than 3 we set a to 2.

boo l s p e c u l a t e ( i n t d e p t h ){
l = f e t c h d e p t h o f t h r e a d s ( ) ;
s o r t ( l ) ;

m = m + 1 . 0 / pow ( 2 , n o r o l l b a c k + 1 ) ;
i f ( l e n ( l ) < 3)

r e t u r n 2 > d e p t h ;
i n t a = l [ |m ∗ l e n ( l ) | ] ;
r e t u r n a > d e p t h ;
}

If a speculative function makes a function call, we create
another thread. This threads’ parent will be in the list of
executing functions. One of the functions in this list could have
a suitable checkpoint to rollback to and the motivations for
doing this, is that the threads executing when you speculate on
a function call, is probably one of the depths you will rollback
to in case of a rollback. We can choose one such thread by the
median of the currently executing threads’ depths. Therefore
the median could be a suitable automatic choice for a limitation

of the checkpoint depth. However a fixed median value (like
0.75 or 0.25× the length of the list with depths), even though
it made the memory usage lower, increased the execution time.
This can be understood from the characteristics of JavaScript
execution shown by Martisen at al. [4]; JavaScript functions are
small in terms of number of executed bytecode instructions and
quickly returns. Therefore the depth of the speculated functions
is going to vary.

Fig. 4. The maximum number of threads for various points during the
execution for linkedin.

In Figure 4 the number of threads executing varies greatly.
This is a result of nested speculations; each speculated function
executes a small number of bytecode instructions, but they are
idle while waiting for their child threads to commit back. This
argues for an adaptive approach to find a suitable limit to the
checkpoint depth. In addition, a fixed checkpoint depth limit
does not take rollbacks into account. Since a rollback is often
followed by new rollbacks we use a moving median m, as seen
in Listing 1. JavaScript in web applications is restricted to a
single call to the JavaScript engine, so we do not increase m
when we speculate successfully.

V. EXPERIMENTAL METHODOLOGY

We have modified the TLS implementation from Martinsen
et al. [7] so we control whether we store a checkpoint or not.
The execution behavior of a web application is dependent not
only on the JavaScript isolated, but also on the interaction
between JavaScript and the web browser such as manipulation
of the DOM tree, but we deliberately focus on the JavaScript
execution time.

We have selected 15 web applications from the Alexa
list [15] of most visited web applications. The experiments
are made on a computer running Ubuntu 10.04 equipped with
2 quadcore, Xeon R© 2Ghz processors with 4MB cache each,
i.e., in total 8 cores (without hyper-threading), and with 16 GB
main memory.

VI. RESULTS OF FIXED CHECKPOINT DEPTHS

The main results of limiting the checkpoint depth are that
we are able to reduce the memory usage, and even in certain
cases have a higher speedup. We evaluate the effects of storing
the checkpoint up to the checkpoint depth limits 1, 2, 4, 8,
and when we set no limitation on the checkpoint depth limit,
both in terms of execution time, memory usage for speculation,
rollbacks, number of threads, and number of speculations.

A. Improved execution time

Increasing the checkpoint depth does not decrease the
execution time. In Figure 5, the highest speedup for 11 of
the 15 use cases is when we limit the checkpoint depth to



either 2, 4 or 8. Without a limit to the checkpoint depth is the
fastest for 3 out of 15 cases. If we limit the checkpoint depth
to 2, it is the fastest for 4 out of 15 cases, if we limit the
checkpoint depth to 4 or 8, it is the fastest for 6 out of 15 (for
the cases Wikipedia and Blogspot the maximum checkpoint
depth is 4, therefore the behaviour is identical when we limit
the checkpoint depth to either 4 or 8).

The overhead of TLS is increasing with an increased limit
on the checkpoint depth, and the potential for finding functions
to speculate on decreases as the checkpoint depth increases
over 4. This follows the JavaScript execution model in web
applications, where we are limited by a certain amount of time
for each JavaScript call.

When we limit the checkpoint depth to 2, it is on average
2.39 times faster than the sequential execution time. When
we limit the checkpoint depth to 4, it is 2.64 times faster and
when we limit the checkpoint depth to 8, it is 2.61 times faster.
When we do not limit the checkpoint depth, we see that it is on
average 2.45 times faster than the sequential execution time.

When we set the checkpoint depth limit to 2, it is on
average 2% slower than when we do not limit the checkpoint
depth limit, but uses only 65% of the memory. When we set
the checkpoint depth limit to 4 or 8, it is 7% and 6% faster
and uses 83% and 97% of the memory.

In Figure 5 both Wikipedia and Gmail are faster for a
checkpoint depth limit = 1. Wikipedia has no rollbacks, and
compared to the other cases, a small number of JavaScript
bytecode instructions that are executed with for instance 12
speculation versus 12012 for MSN. Therefore, we do not see
an increased execution time with rollbacks, as there are none,
independent of what checkpoint depth limit we set. Further, we
do not get a significant speedup, since the number of bytecode
instructions and the number of functions to speculate on are
much lower.

Gmail has 40 threads executing at checkpoint depth 1 and
32 threads executing at checkpoint depth 2. If we count the
number of rollbacks, we see that there are 11 rollbacks when
we set the checkpoint depth limit to 1, and 17 rollbacks when
we set the checkpoint depth limit to 2. Still the execution
time is 2% faster setting the checkpoint depth limit = 2, than
when checkpoint depth limit = 1. This appears counterintuitive,
since there is a larger number of threads and a lower number
of rollbacks, so it should be able to exploit running more
JavaScript functions in parallel than for checkpoint depth
limit=2 and therefore should be faster. However, the cost of
doing rollbacks is much higher for checkpoint depth limit=1,
than it is for checkpoint depth limit=2. So the effect of having
a larger number of threads for checkpoint depth 1 does not
outweigh the cost of doing rollbacks, therefore it is slower than
checkpoint depth limit=2, but because of the large number of
threads and a lower number of rollbacks, it still faster than
sequential execution.

In Figure 5 the gain in improved execution time is marginal
if we limit the checkpoint depth to 8 instead of 2 or 4. This
is in line with the results of Martinsen et al. [8]. Most of the
JavaScript function calls have a depth of 2 and 4. There is a
limit to the amount of time JavaScript is allowed to execute
for each event in the web application. Therefore, as the depth
of a function increases, the number of executing bytecode

instruction decreases. This explains why there isn’t a large
increase in the cost of doing rollbacks, when we rollback from
a checkpoint depth larger than 4 and that the relative increase
in execution time decreases as the depth increases.

The highest speedup is at checkpoint depth limit=4. Then
the speedup is gradually reduced to checkpoint depth limit=8,
and further reduced when no checkpoint depth limit is set.
Still it is faster than the sequential execution time. This shows
that the overhead of TLS increases when we increase the
checkpoint depth limit, and the gain in terms of more functions
to speculative execute decreases with an increased depth.

For Facebook the execution time improves for checkpoint
depth limit = 2, then for checkpoint limit = 4 it is slower than
the sequential execution time. If we compare the number of
rollbacks with the number of executed bytecode instructions,
this gradually decreases to checkpoint depth limit=8. From the
observation of the execution time when we set no limit to the
amount of checkpoint stores, this shows that the number of
executed bytecode instructions decreases, and that we at some
point are able to have a lower execution time such that it is
lower than the sequential one.

At checkpoint depth limit=2 the cost of the rollbacks is
increasing so that it is 2% slower than when no limit is set.
When we set a checkpoint depth limit=1, it is slower than the
sequential execution time.

In Figure 7 the number of executed bytecode instructions
is, as long as there are rollbacks, always higher with TLS. We
see that the number of executed bytecodes increases when the
checkpoint depth limit decreases which shows that the costs
to do rollbacks and to do re-execution increase.

In the lower part in Figure 7, we see that the number of
rollbacks increases, as the checkpoint depth limit increases.
The cost of doing a rollback decreases as the checkpoint depth
increases, even though the number of rollbacks decreases. This
is because the amount of bytecode instructions re-executed will
be lower, even though there are more rollbacks. Therefore we
reduce the memory usage, and have a higher speedup, if we
are more restrictive on the checkpoint depth since the number
of re-executed bytecode instructions will be smaller.

The highest speedup is at checkpoint depth limit = 4. Then
the speedup is gradually lowered going to checkpoint depth
limit = 8, and further lowered when no limit on the checkpoint
depth is set. Still it is faster than the sequential execution time.
This indicates that the overhead of TLS increases when we
increase the checkpoint depth limit, and the gain in terms of
potential more functions to execute from a higher checkpoint
depth limit is lowered.

For Facebook we see that the execution time improves for
checkpoint depth limit = 2, then for checkpoint depth limit = 4
the execution time decreases to below the sequential execution
time. If we compare the number of rollbacks with the total
number of executed bytecode instructions, this number grad-
ually decreases toward checkpoint depth limit=8. This shows
that the number of executed bytecode instructions decreases,
and that we are able to have a lower execution time.

At checkpoint depth limit = 2 the cost of the rollbacks in
terms of executed bytecode instructions is increasing to such



Fig. 5. The speedup when we limit the checkpoint depth to 1, 2, 4, 8 and put no restriction on the checkpoint depth and the speedup of the adaptive heuristic.

Fig. 6. The memory usage when we limit the checkpoint depth to 1, 2, 4, 8 and for the adaptive heuristics relative to when we set not checkpoint depth.

an extent that it is 2% slower than when no limit is set on the
checkpoint depth. When we set a checkpoint depth limit = 1
it is slower than the sequential execution time.

B. Reduction in memory usage

Increasing the limit of the checkpoint depth increases the
memory usage. In Figure 6 we have measured the maximum
memory usage for the selected use cases when we limit the
checkpoint depth to 1, 2, 4, 8 and when we have no limit on
the checkpoint depth. Since the memory usage varies between
1 and 1527MB, we have divided each memory usage with the
memory usage when we do not limit the checkpoint depth.
We have written the memory usage for TLS in Martinsen et
al. when we do no limit on the checkpoint depth in parenthesis
in Figure 1.

Figure 6 shows that the memory usage is increasing as we

increase the checkpoint depth limit. The reason is that we are
saving more states in case of rollbacks. When we are limiting
the checkpoint depth to 2, we reduce the memory usage of
TLS with 65%. When we limit the checkpoint depths to 4 and
8, we reduce the memory usage with 14% and 3% respectively.

For Linkedin, Blogspot, Google, Ebay, YouTube and mys-
pace, the memory usage is higher with a checkpoint depth
limit = 8, than when we do not limit the checkpoint depth.
There are two operations in TLS which reduce the memory
usage; when we rollback on mis-speculations and when we
commit a function back to its parent thread when a function
completes execution.

In Linkedin we have almost the same number of threads
and speculations; however when we do not limit the checkpoint
depth, the number of rollbacks becomes much higher, therefore
we are able to reduce more memory than when we limit the



Fig. 7. The number of executed bytecode instructions in Thread-Level Spec-
ulation relative to the number of sequentially executed bytecode instructions
(upper) and the number of rollbacks relative to the number of rollbacks when
we do not limit the checkpoint depth (lower). A special case in the Figure is
the wikipedia case, were there are no rollbacks, so the number of executed
bytecode instructions are the same for TLS and for the sequential execution.

checkpoint depth to 8.

Blogspot and Ebay almost have the same number of
speculations, but without a limit on the checkpoint depth we
get a larger number of threads and rollbacks. Then we reduce
the memory both from rollbacks and when we commit values
to parents’ threads.

For Myspace and Google, we have a larger number of
speculations than when we limit the checkpoint depth to 8,
while the number of threads and rollbacks are the same, which
shows that we have more rollbacks and threads relative to the
number of speculations, which reduces the memory.

For YouTube we have the same number of threads, fewer
speculations, but a huge increase in the number of rollbacks.
We free more memory on rollbacks, and therefore have a lower
maximum memory usage.

For these 6 cases, the memory usage is larger for a
checkpoint depth of 8 than when no checkpoint depth is set.
If we rollback to a different checkpoint depth, we may find
other speculation possibilities, which may use more memory
as we speculate differently.

The main observations from these measurements are; We
are able to improve the execution time by 7% by limiting the
checkpoint depth over when we do not limit the checkpoint
depth. We are also able to reduce the memory usage by 65%.
This shows that the effect of not limiting the checkpoint depth
in terms of execution time is limited, but that not limiting the
checkpoint depth requires a large amount of memory.

VII. RESULTS OF THE ADAPTIVE HEURISTIC

The key idea of the heuristic is to select the checkpoint
depth limit in relation to already executing threads. The

adaptive heuristic significantly reduces the memory usage for
TLS, and gives an execution time that is close to the execution
time when we set no limit on the checkpoint depth. Since we
are using nested speculation, there might be a large number of
threads already executing when we speculate. When a rollback
occurs, we try to select a checkpoint depth in the speculation
tree such that the number of bytecode instructions in case of
rollbacks in the future will be lowered.

A. Improved execution time

Figure 5 shows that we are able to increase the speedup of
JavaScript execution from 1.14 – 8.69 times faster (MSN and
YouTube), and have a speedup which more than half the time is
faster than when we do not set any limitation on the checkpoint
depth, and always better than the sequential execution time
(except for BBC). One example of the effect of the heuristic
is the YouTube web application; when no limit is set on the
checkpoint depth, it uses 255 MB and is over 8 times faster.
With the heuristic it only uses 44 MB (a reduction of 83%)
while it is only 4% slower compared to when no limit is set
on the checkpoint.

Overall, the heuristic makes us select a checkpoint depth
such that there is a low number of bytecode instructions to re-
execute if there will be a rollback. This can be seen from
measuring the number of bytecode instructions that is re-
executed at a rollback. The number of rollbacks is higher with
the heuristic than for checkpoint depth limit = 1, but each
rollback requires less bytecode instructions to be re-executed
with the heuristic. We also see that if there will be a rollback,
and there are a large number of threads executing, we are
bound to rollback to the parents speculative functions, which
are nearby, which in the future makes rollbacks require less
bytecode instructions to re-execute. If the depth is lower than
3, we choose to save the state to 1, which we saw was costly
for checkpoint depth 1, but at the same time, if the number of
executing threads are low Martinsen et al. show that it is not
very likely to have a rollback.

Figure 8 shows the checkpoint depths in the only example
which is slower than the sequential execution with the heuris-
tic. The memory usage is 93% of the memory usage when no
checkpoint depth is set. This is caused by the heuristic rolling
back to a checkpoint depth which is close to 1, repeatedly.
This significantly reduces the memory usage, but increases the
cost of rollbacks as it forces us to re-execute many bytecode
instructions.

Fig. 8. The selected checkpoint depths during execution of the bbc use-case

When a small number of threads are executing, we do not
really need to store the checkpoint. If a rollback occurs, the
amount of bytecode instructions we have to re-execute will be
small. This has two consequences; first, given the limitations
of allowed execution time in JavaScript in web applications,



the functions that are executing are at this point quite large.
The next consequence is, if there will be a rollback in these,
the number of bytecode instructions for the re-execution is
limited. Therefore the heuristic reduces the execution time.

B. Reduction in memory usage

Figure 6 shows that we reduce the memory usage between
93% – 45% (BBC and Linkedin). One exception is Wikipedia,
but this use case does not have any rollbacks, little JavaScript
execution, and a low number of JavaScript function calls,
which limits the potential gain from speculations.

The heuristic is able to reduce the memory usage below
when we set the checkpoint depth limit to 1. In Figure 6, for
9 out of the 15 use cases, the memory usage is lower with the
heuristic than when we set the checkpoint depth limit to 1.

The heuristic has a higher number of rollbacks and a
higher number of speculations. This explains why the memory
usage is lower, both with more rollbacks with small number
of bytecode instructions that needs to re-executed and more
commits. Since we are using nested speculation, a speculated
function could be created from a function executing specu-
lativly. We could imagine the functions executing in a tree
like structure, similar to the one in Figure 3. When we do
a rollback, we would like to rollback to a state, which is
part of the speculation tree, to reduce the number of bytecode
instructions that needs to be re-executed. With a checkpoint of
1, we often re-execute bytecode instructions which are not part
of the speculation tree, but with a moving median we might
not.

When the number of already executing threads is below
3, there will probably be no rollback; therefore we set the
checkpoint depth to 2. This means that we in many cases do
not save the state when there is a low number of threads,
and therefore we save memory, which leads to a memory
usage similar to checkpoint depth 1. So when we stay in the
speculation tree, we have a higher number of rollbacks (we
saw this from the increase in rollbacks when we increased
the speculation depth) and we are careful where we store the
checkpoint when there are few active threads. This indicates
that the number of threads already executing when we are
about to speculate on a function call, is highly dynamic, since
the amount of execution performed by each JavaScript function
is small. This means that the value of the checkpoint depth
needs to be dynamically set. When there are a small number
of threads already executing, there is not really a need to save
the checkpoint. If there is a large number of threads, there is
likely going to be many threads with different depths, and in
that case, make sure that the checkpoint is near so you rollback
in the speculation tree.

The results of this heuristic, is that we are able to signifi-
cantly improve the execution time, while reducing the memory
usage by over 90% by adaptively selecting at what depth we
are storing checkpoints.

VIII. CONCLUSIONS

We have (i) proposed to reduce the memory usage of
Thread-Level Speculation in JavaScript virtual machines by
only storing states up to certain limited checkpoint depths,

and (ii) we proposed and evaluated an adaptive heuristic to
dynamically adjust the checkpoint depth.

Our results show that we do not need to save the state each
time we speculatively execute a function. As a result, we can
reduce the amount of memory used for speculation. However,
since nested speculation has been shown to be necessary, we
need to save states on at least checkpoint depth 2 in order to
improve the execution time, or it will be too expensive to do
the necessary rollbacks.

Further, our results show that our proposed adaptive heuris-
tic reduces the memory usage significantly, over 90% as
compared to when no checkpoint limit is set. The execution
time of our adaptive heuristic is approximately the same as
when using no checkpoint limit, sometimes it is slightly (4%)
slower but it has also been shown to be over 50% faster.

REFERENCES

[1] Mozilla, “SpiderMonkey – Mozilla Developer Network,” 2012,
https://developer.mozilla.org/en/SpiderMonkey/.

[2] Google, “V8 JavaScript Engine,” 2012, http://code.google.com/p/v8/.
[3] P. Ratanaworabhan, B. Livshits, and B. G. Zorn, “JSMeter: Comparing

the behavior of JavaScript benchmarks with real web applications,” in
WebApps’10: Proc. of the 2010 USENIX Conf. on Web Application
Development, 2010, pp. 3–3.

[4] J. K. Martinsen, H. Grahn, and A. Isberg, “A Comparative Evaluation
of JavaScript Execution Behavior,” in Proc. of the 11th Int’l Conf. on
Web Engineering (ICWE 2011), June 2011, pp. 399–402.

[5] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers, “A limit study
of javascript parallelism,” in 2010 IEEE Int’l Symp. on Workload
Characterization (IISWC), Dec. 2010, pp. 1–10.

[6] M. Mehrara, P.-C. Hsu, M. Samadi, and S. Mahlke, “Dynamic paral-
lelization of JavaScript applications using an ultra-lightweight specula-
tion mechanism,” in Proc. of the 17th Int’l Symp. on High Performance
Computer Architecture, 2011, pp. 87–98.

[7] J. K. Martinsen, H. Grahn, and A. Isberg, “Using Speculation to
Enhance JavaScript Performance in Web Applications,” IEEE Internet
Computing, vol. 17, no. 2, pp. 10–19, 2013.

[8] ——, “A Limit Study of Thread-Level Speculation in JavaScript
Engines – Initial Results,” in Fifth Swedish Workshop on Multi-Core
Computing (MCC-12), November 2012, pp. 75–82.

[9] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the
dynamic behavior of JavaScript programs,” in PLDI ’10: Proc. of the
2010 ACM SIGPLAN Conf. on Programming Language Design and
Implementation, 2010, pp. 1–12.

[10] C. J. F. Pickett and C. Verbrugge, “Software thread level speculation
for the Java language and virtual machine environment,” in LCPC ’05:
Proc. of the 18th Int’l Workshop on Languages and Compilers for
Parallel Computing, October 2005, pp. 304–318, lNCS 4339.

[11] P. Rundberg and P. Stenström, “An all-software thread-level data depen-
dence speculation system for multiprocessors,” Journal of Instruction-
Level Parallelism, pp. 1–28, 2001.

[12] M. Mehrara and S. Mahlke, “Dynamically accelerating client-side web
applications through decoupled execution,” in Proc. of the 9th Annual
IEEE/ACM Int’l Symp. on Code Generation and Optimization (CGO),
april 2011, pp. 74–84.

[13] J. Mickens, J. Elson, J. Howell, and J. Lorch, “Crom: Faster web
browsing using speculative execution,” in Proc. of the 7th USENIX
Symp. on Networked Systems Design and Implementation (NSDI 2010),
April 2010, pp. 127–142.

[14] J. Martinsen, H. Grahn, and A. Isberg, “Heuristics for Thread-Level
Speculation in Web Applications,” IEEE Computer Architecture Letters,
pp. 1–1, 2013.

[15] Alexa, “Top 500 sites on the web,” 2010, http://www.alexa.com/topsites.


