
42

The Effects of Parameter Tuning in Software Thread-Level
Speculation in JavaScript Engines

Jan Kasper Martinsen, Blekinge Institute of Technology
Håkan Grahn, Blekinge Institute of Technology
Anders Isberg, Sony Mobile Communications AB

JavaScript is a sequential programming language that has a large potential for parallel execution in web
applications. Thread-Level Speculation can take advantage of this, but it has a large memory overhead.
In this paper, we evaluate the effects of adjusting various parameters for Thread-Level Speculation. Our
results indicate that 32–128 MB memory, 16 threads, and a speculation depth of 4–16 levels are enough to
reach most of the performance increase, and that nested speculation is necessary in order to achieve a high
Thread-Level Speculation performance in web applications.

Categories and Subject Descriptors: C.1.4 [PROCESSOR ARCHITECTURES]: Parallel Architectures;
C.1.m [PROCESSOR ARCHITECTURES]: Miscellaneous

1. INTRODUCTION
JavaScript is a dynamically typed, object-based scripting language with run-time eval-
uation, where execution is done in a JavaScript engine [Google 2012; WebKit 2012;
Mozilla 2012]. One use of JavaScript is to add interactivity to web applications. Sev-
eral optimization techniques have been suggested to decrease the execution time, e.g.,
just-in-time compilation (JIT) [Google 2012]. However, the decrease in execution time
has been measured on a set of benchmarks, which are unrepresentative for JavaScript
execution in web applications [Martinsen and Grahn 2011; Ratanaworabhan et al.
2010; Richards et al. 2010]. One result of this is that JIT decreases the execution time
for benchmarks, while it often increases the JavaScript execution time in popular web
applications [Martinsen et al. 2011; 2013].

JavaScript is a sequential programming language and cannot take advantage of
multicore processors to decrease the execution time. It is possible to take advantage of
multicore in web applications through Web Workers [W3C 2011]. However, Web Work-
ers is intended for improving the responsiveness of web applications, rather than de-
creasing the execution time. Fortuna et al. [Fortuna et al. 2010] have shown that there
exists a significant parallelism potential in many web applications with an estimated
speed up of up to 45 times.

To hide the details of the parallel hardware, one approach is to dynamically extract
parallelism from a sequential program using Thread-Level Speculation (TLS) [Rund-
berg and Stenström 2001]. The performance potential of TLS has been shown for
applications with static loops, statically typed languages, and in Java bytecode en-
vironments, and lately for the JavaScript SpiderMonkey engine on a series of well-
known benchmarks [Mehrara et al. 2011] and with speculative execution [Mickens
et al. 2010].

In [Martinsen and Grahn 2010], we use TLS in the Rhino JavaScript engine and
evaluated it on the V8 JavaScript benchmarks. In [Mehrara and Mahlke 2011] the
parallelization is extracted with a light weight speculation mechanism.

We extended our work in [Martinsen et al. 2013] and implemented TLS in the Squir-
relfish JavaScript engine which is part of WebKit [WebKit 2012]and evaluated it on a
number of web applications. However, even if we were able to decrease the execution
time significantly; our approach had a high memory overhead.

In this study, we evaluate the effects of adjusting the amount of available mem-
ory, the maximum number of threads, and the speculation depth. We implement the
limitations in the Squirrelfish engine and evaluate them on 15 web applications. We

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:2 J.K Martinsen et al.

measure the effects of the adjustment on the execution time, memory usage, number
of threads, speculation depth, number of speculations and the number of rollbacks.

Our results show that we can decrease the execution time and reduce the memory
overhead by tuning these parameters.

Our main contributions are:

— The effects of limiting the execution resources for a Thread-Level Speculation scheme
for a JavaScript engine.

— We find that 32–128 MB of memory, 16 threads, and a speculation depth of 4–16 is
enough to reach most of the performance increase for the studied web applications.

— Nested speculation is necessary in order to achieve a high TLS performance for web
applications.

This paper is organized as follows: In Section 2, we introduce JavaScript, web ap-
plications, and Thread-Level Speculation. In Section 3 we present our implementation
of TLS and a comparisons with other JavaScript engines and in Section 4, we present
the experimental methodology, and the studied web applications. Our experimental re-
sults are presented in Section 5, in Section 6 we discuss our findings and in Section 7
we conclude our findings.

2. BACKGROUND
2.1. JavaScript
JavaScript [JavaScript 2010] is a dynamically typed, object-based scripting language
with run-time evaluation used to add interactivity in web applications. The execution
is done in a JavaScript engine. JavaScript has a syntax similar to C and Java, while
it offers features such as closures and anonymous functions often found in functional
programming languages such as Haskell.

The performance of popular JavaScript engines such as Google’s V8 engine [Google
2012], WebKit’s Squirrelfish [WebKit 2012], and Mozilla’s SpiderMonkey and Trace-
Monkey [Mozilla 2012] has increased, reaching a higher single-thread performance
for a set of benchmarks. However the results from these benchmarks are mislead-
ing [Martinsen and Grahn 2011; Ratanaworabhan et al. 2010; Richards et al. 2010]
and optimizing towards the characteristics of the benchmarks increases the execution
time for real-life web applications [Martinsen et al. 2011].

2.2. Web Applications
In web applications the client side computations are executed in a JavaScript en-
gine and these functionalities are often defined as events. These events are defined
as JavaScript functions that are executed for instance when the user clicks a mouse
button, when a web page loads for the first time or certain tasks that are executed
between time intervals. In contrast to JavaScript alone, web applications might ma-
nipulate parts of the web application that are not accessible from a JavaScript engine
alone. The functionality is executed in a JavaScript engine, but the program flow is
part of the web application. A key concept in web applications is the Document Ob-
ject Model (DOM) that defines each element in the web application. The programmer
can modify and create content in the web applications through the DOM tree with
JavaScript.

Studies [Martinsen and Grahn 2011; Ratanaworabhan et al. 2010; Richards et al.
2010] have show that web applications use dynamic programming language features
extensively. Parts of the program are defined at runtime, and types and extensions of
objects are re-defined during runtime.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:3

2.3. Thread-Level Speculation Principles
TLS aims to dynamically extract parallelism from a sequential program. This can be
done both in hardware, e.g., [Chaudhry et al. 2009; Renau et al. 2006; Steffan et al.
2005], and software, e.g., [Bruening et al. 2000; Kazi and Lilja 2001; Oancea et al.
2009; Pickett and Verbrugge 2005b; Rundberg and Stenström 2001]. Two main ap-
proaches exist: loop-level parallelism and method-level speculation. In this paper we
use method-level speculation.

In method-level speculation, we execute function calls as threads and we must cor-
rectly predict the return values when we speculate as well as detect the writes and
reads that cause the speculative program to violate the sequential semantics. The last
two are typically detected when the values associated with two function calls are com-
mitted back to their parent thread. Between two consecutive threads we can have
three types of data dependencies: Read-After-Write (RAW), Write-After-Read (WAR),
and Write-After-Write (WAW). A TLS implementation must be able to detect these de-
pendencies during runtime using information about read and write addresses. A key
design parameter for a TLS system is the precision of at what granularity it can detect
data dependency violations.

When a data dependency violation is detected, the execution must be aborted and
rolled back to a safe point in the execution. Thus, all TLS systems need a rollback
mechanism. In order to be able to do rollbacks, we need to store both speculative up-
dates of data as well as the original data values. As a result, the book-keeping related
to this functionality results in both memory overhead as well as run-time overhead. In
order for TLS systems to be efficient, the number of rollbacks should be low.

A key design parameter for a TLS system is the data structures used to track and
detect data dependence violations. The more precise tracking of data dependencies, the
more memory overhead is required. Unfortunately, one effect of imprecise dependence
detection is the risk of a false-positive violation, i.e., when a dependence violation is de-
tected when no actual (true) dependence violation is present. As a result, unnecessary
rollbacks need to be done, which decreases the execution time. TLS implementations
can differ depending on whether they update data speculatively ’in-place’, i.e., moving
the old value to a buffer and writing the new value directly, or in a special speculation
buffer.

2.4. Software-Based Thread-Level Speculation
In this section we review some of the most important software-based TLS proposals.

Bruening et al. [Bruening et al. 2000] proposed a software-based TLS system that
targets loops where the memory references are stride-predictable. This is one of the
first techniques that is applicable to while-loops where the loop exit condition is un-
known until the last iteration. They evaluate their technique on both dense and sparse
matrix applications, as well as on linked-list traversals. The results show speed-ups of
up to almost five on 8 processors.

Rundberg and Stenström [Rundberg and Stenström 2001] proposed a TLS imple-
mentation that resembles the behavior of a hardware-based TLS system. The main
advantage with their approach is that it tracks data dependencies precisely, thereby
minimizing the number of unnecessary rollbacks caused by false-positive violations.
The downside is the memory overhead. They show a speed up of up to 10 times on
16 processors for three applications from the Perfect Club Benchmarks [Berry et al.
1989].

Kazi and Lilja developed the course-grained thread pipelining model [Kazi and Lilja
2001] exploiting coarse-grained parallelism. They suggest to pipeline the concurrent
execution of loop iterations speculatively, using run-time dependence checking. In their

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:4 J.K Martinsen et al.

evaluation they used four C and Fortran applications (two were from the Perfect Club
Benchmarks [Berry et al. 1989]). On an 8-processor machine they achieved speed-
ups of between 5 and 7. They later extended their approach to also support Java pro-
grams [Kazi and Lilja 2000].

Bhowmik and Franklin [Bhowmik and Franklin 2002] developed a compiler frame-
work for extracting parallel threads from a sequential program for execution on a TLS
system. They support both speculative and non-speculative threads, and out-of-order
thread spawning. Further, their work addresses both loop as well as non-loop paral-
lelism. Their results from 12 applications taken from three benchmark suites (SPEC
CPU95, SPEC CPU2000, and Olden) show speed-ups between 1.64 and 5.77 on 6 pro-
cessors.

Cintra and Llanos [Cintra and Llanos 2003] present a software-based TLS system
that speculatively executes loop iterations in parallel within a sliding window. As a re-
sult, given a window size of W at most W loop iterations/threads can execute in paral-
lel at the same time. By using optimized data structures, scheduling mechanisms, and
synchronization policies they manage to reach in average 71% of the performance of
hand-parallelized code for six applications taken from various benchmark suites [Stan-
dard Performance Evaluation Corporation 2000; Berry et al. 1989].

Chen and Olukotun shows [Chen and Olukotun 1998; 2003] how method-level par-
allelism can be exploited using speculative techniques. The idea is to speculatively
execute method calls in parallel with code after the method call. Their techniques are
implemented in the Java runtime parallelizing machine (Jrpm). On four processors,
their results show speed-ups of 3–4, 2–3, and 1.5–2.5 for floating point applications,
multimedia applications, and integer applications, respectively.

Picket and Verbrugge [Pickett and Verbrugge 2005a; 2005b] developed Sable-
SpMT.Their solution is implemented in a Java Virtual Machine, called SableVM, and
thus works at the bytecode level. They obtain at most a two-fold speed-up on a 4-way
multicore processor.

Oancea et al. [Oancea et al. 2009] present a TLS proposal that supports in-place up-
dates. They have a low memory overhead with a constant instruction overhead, at the
price of lower precision in the dependence violation detection mechanism. However, the
scalability of their approach is superior due to the fact that they avoid serial commits
of speculative values. The results show that their TLS approach reaches in average
77% of the speed-up of hand-parallelized, non-speculative versions of the programs.

A study by Prabhu and Olukotun [Prabhu and Olukotun 2005] analyzed what
types of thread-level parallelism that can be exploited in the SPEC CPU2000 Bench-
marks [Standard Performance Evaluation Corporation 2000]. They identified a num-
ber of useful transformations, e.g., speculative pipelining, loop chunking/slicing, and
complex value prediction.

A study by Hertzberg and Olukotun [Hertzberg and Olukotun 2011] has a runtime
system that decreases the execution time, and where idle cores are used to analyze po-
tentially forthcoming speculations. It reportedly decreases the execution time of SPEC
CPU2000 Benchmarks by 49%.

A study by Tian et al. [Tian et al. 2008] presents a novel Copy or Discard (CorD)
execution model to efficiently support software speculation on multicore processors
using profiled C code transformation with LLVM [Lattner and Adve 2004] to support
parallel execution. The state of speculative parallel threads is maintained separately
from the non-speculative computation state. The computation results from parallel
threads are committed if the speculation succeeds; otherwise, they are discarded. They
achieve speed ups ranging from 3.7 to 7.8 on a server with two Intel Xeon quad-core
processors.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:5

Renau et al. [Renau et al. 2005] presents three mechanisms; Splitting Timestamp In-
tervals, Immediate Successor List, and Dynamic Task Merging for out-of-order spawn-
ing in TLS. These techniques are implemented into their custom compiler, and on a
quad core computer they are able to have an average speed up of 1.30 for the SPECint
2000 applications.

Mehrara and Mahlke [Mehrara and Mahlke 2011] show how to utilize multicore sys-
tems in JavaScript engines. However, their study has a different approach as well as
a different target than we have. It targets trace-based JIT-compiled JavaScript code,
where the most common execution flow is compiled into an execution trace. Then, run-
time checks (guards) are inserted to check whether control flow etc. is still valid for
the trace. They execute the runtime checks in parallel with the main execution flow
(trace), and only have one single main execution flow. Our approach is to execute the
main execution flow in parallel.

In [Mehrara et al. 2011] they introduce a lightweight speculation mechanism that
focuses on loop-like constructs in JavaScript, and if the loop contains a sufficient work-
load, it is marked for speculation. As this code used the trace features of Spidermonkey,
a selective form of speculation is employed. They found that they were able to make
speculation 2.8 times faster for well known JavaScript benchmarks. Unfortunately,
large loop structures are rare in real web applications as shown in [Martinsen et al.
2011].

Mickens et al. [Mickens et al. 2010] suggest an event-based speculation mechanism
which is deployed as a JavaScript library called Crom. However, unlike our approach,
their main goal is to enhance the responsiveness, while our main goal is to reduce the
JavaScript execution time by dynamically extracting parallelism.

In summary, there is a significant amount of research done on software-based
Thread-Level Speculation. However, we have not found any study that thoroughly
evaluates the effects of adjusting the amount of memory, the number of threads, or
the depth of speculation, for web applications.

3. THREAD-LEVEL SPECULATION IMPLEMENTATION FOR JAVASCRIPT
In this section, we describe our TLS implementation [Martinsen et al. 2013].

3.1. Speculation mechanism
Execution in Squirrelfish is divided into two stages, first the JavaScript code is com-
piled into bytecode instructions, then the bytecode instructions are executed. We ex-
tract two things: The compiled bytecode instructions which are to be executed, and
the execution trace of a sequential execution of the bytecode instructions. We later use
the sequential execution trace to validate the correctness of the speculative execution
off-line.

Initially we initialize a counter realtime to 0. For each executed bytecode instruction,
the value of realtime is increased by 1. We give the interpreter a unique id (p realtime)
(initially this will be p 0).

During execution we might encounter the bytecode instruction that indicates the
start of a function call. We extract the realtime value and the id of the threaded in-
terpreter that makes this call, e.g., p 0220 (a function is called after 220 bytecode
instructions from p 0). We denote the value of the position of this function call as func-
tion order, which emulates the sequential time in our TLS program (Fig. 1). This is
possible in JavaScript in web applications since we know that there is going to be a
very large number of function calls. We check if this function previously has been spec-
ulated by looking up the value of previous[function order]. previous is a vector where
each element is indexed by the function order. If the entry is 1, then the function has

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:6 J.K Martinsen et al.

been speculated unsuccessfully. If the value is 0, then it has not been speculated or has
been successfully speculated, and we call this position a fork point.

Fig. 1: We use the order that the functions are called in, to determine the order in
which the program would have been sequentially executed. This works in JavaScript
in a web applications setting, as there are multiple function calls. For instance, in a
simplified example the JavaScript function f0, performs 3 function calls, f01, f02 and
f03. f01 performs two function calls, f011 and f012. Thus, we have created a speculation
tree from the function calls. If we traverse this tree from left to right, we get an order
in which the functions are called, equal to the order in which the functions would
be sequentially called, in order to uphold the sequential semantics during execution
with TLS. More specific: f0 at time p 1, f01 at time p 2, f011 at time p 3, f012 at time
p 4, f02 at time p 5, and f03 at time p 6. We denote how each function is ordered as
function order

If the position of the function call is a fork point, we do the following; we set the po-
sition of the function call’s previous[function order] = 1. We save the state which con-
tains the list of previously modified global values, the list of states from each thread,
the content of the register in the JavaScript engine, and the content of previous.

We then create a new thread which contains an interpreter with an unique id which
contains a new Squirrelfish engine. We copy the value of realtime from its parent and
modify the state of the parent such that the current instruction is changed from the
position of the ”function call” bytecode instruction to the position of the associated
”end of function call” bytecode instruction. In other words, the parent thread ships the
function call and continues to execute speculatively after the function call.

Now we have two interpreters running as concurrent threads, and this process is
repeated each time a suitable candidate for speculation is encountered, thereby allow-
ing nested speculation. If there is a conflict between two global variables, an incorrect
return value prediction or writing to the DOM tree, we perform a rollback to the point
where the speculation started.

Our return value prediction predicts the return values in a last predicted value man-
ner [Hu et al. 2003] from a function with the same name (if a name is present).
This is a simple heuristic for return value prediction, but as we mentioned earlier,
function calls in JavaScript are often anonymous, use eval calls extensively, or these
calls are events started from the web applications. These functions, do not return any

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:7

value. Therefore does a heuristic such as the last returned value works fairly well for
JavaScript execution in web applications.

In Fig. 2, we outline the process of speculation and a subsequent rollback to restore
the execution to a safe state, i.e., commit or where the speculation started.

Fig. 2: In (a), at time 1 in thread 0 we write the value 7 to the global value x. At time
2 in thread 0 we encounter a function call which we speculate on and this function
call becomes thread 1. At time 3, thread 0 reads 7 from the global variable x. At time 4
thread 1 reads the same variable. At time 5 the function which is thread 1, returns and
the global variables are committed back to thread 0. In (b) we write 7 to x in thread 0
at time 1. At time 2 thread 0 makes a function call that becomes thread 1. At time 3
thread 0 reads the value 7 from global variable x. At time 4 thread 1 writes 5 from the
variable x. In the sequential case, the function called at time 2, the value of variable x
would have been 5 at time 2 (i.e., when the function returns), and thread 0 would read
5 from x after the function has returned. This means that thread 0 is squashed, and
when we commit the values at time 5 we can no longer ensure sequential semantics.
Therefore at time 6, we need to restore the JavaScript execution state to the point
before we speculated on the function call and do not speculate on this function call
again.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:8 J.K Martinsen et al.

3.2. Data dependence violation detection
For correct speculative execution, we check for write and read conflicts between global
variables, object property id names and unsuccessful return value predictions of func-
tion calls. Each global variable has an unique identification, uid, which is either the
index of the global variable or the name of the id in the object property.

When we encounter a read or write bytecode instruction, we check the global list
variable modification. This list contains previous reads and writes for all uids sorted
per uid. If the uid is not in the list, we lock variable modification, insert uid into
variable modification, create a sublist for reads and writes to that uid, and insert the
type of bytecode instruction, realtime, and function order as the first element of the
sublist. If there were no conflicts between the current executed bytecode and previous
reads and writes of the uid, we insert an element to the head of the sublist for this uid
with the type of bytecode, realtime, and function order.

Each time we encounter a read or write access to an uid, we evaluate the following
cases in variable modification.

(i) The current operation is a read, and there is a previous read to the same uid. In
this case, the order in which the uid is read does not matter.

(ii) The current operation is a read, and there is a previous write to the same uid.
Therefore, we check the realtime and the function order for the current read and
the previous write. If a read occurred such that:

current function order>previous function order

and

current realtime<previous realtime

then the execution order of the program is no longer correct and we must do
a rollback. Likewise, the same applies if the current operation is a write, and there
is a previous read to the same uid. In this case, we check the realtime and the
function order from the current write and the previous read. So, if:

current function order>previous function order

and

current realtime<previous realtime

then the execution order of the program is no longer correct and we must do
a rollback.

(iii) The current operation is a write, and there is a previous write to the same uid.
We need to do a rollback if the current write happens before the previous write
in realtime and they have the other order in function order, or if the order of the
write happens after the previous write in realtime but before the previous write in
function order.

3.3. Rollback
Cases (ii) and (iii) force us to do a rollback for program correctness globally, further
we also do rollbacks if we write to the DOM tree. After a rollback, the program is
re-executed from a point before the function was speculated. If the function where
the rollback occurs is nested, we stop the JavaScript interpretion of its child threads,

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:9

Application Description
Google Search engine
YouTube Online video service
Blogspot Blogging social network
LinkedIn Social network
Wordpress Framework behind blogs
Bing Search engine
Myspace Social network

Facebook Social network
Wikipedia Online encyclopedia
MSN Community service
Amazon Online book store
Ebay Online auction
Imdb Online movie database
BBC News paper
Gmail Online email client

Table I: The web applications used in the experiments.

and place the associated threads back in a thread pool for later reuse. At this point
information for relevant threads are extracted, e.g., previous at this point, the number
of associated threads at this point, the values of the associated registers in the register
based JavaScript engine, the values of the global variables and object property ids are
restored for the associated threads, the value of previous (with the index of this failed
speculation set to 1), and the variable conflicts in variable modification.

Even though we have a set of threads that are supposed to be active, there might
be threads after the rollback that is not associated with the current state of the TLS
system. Therefore, we recursively go through the threads and their child threads that
are now part of the active state. The resulting list contains the threads which are
necessary in the current state of execution. The remaining interpreters (running as
threads), which are not necessary for the current state of the execution are stopped,
and returned to the thread pool for later reuse.

3.4. Commit
When a speculative thread reaches the end of execution, its modifications of global
variables and object property ids need to be committed back to its parent thread. The
commit cannot be completed before child threads from this thread have returned and
have committed their values back to their parent thread. If the associated JavaScript
function has a return value which we fail to predict correctly, or if executing the func-
tion causes violations to the sequential semantics, we have to rollback.

4. EXPERIMENTAL METHODOLOGY
We have extended our TLS implementation with three parameters to control the max-
imum memory, the maximum number of concurrent threads and the maximum depth
in nested speculation. When we encounter a JavaScript function suitable for specula-
tion, we first check these parameters. If they are below the specified limit, we specula-
tively execute the function. If a parameter is above the limit we executed the function
sequentially.

4.1. Web applications
We have selected 15 web applications (Table I) from the Alexa list [Alexa 2010]. We
selected different types of web applications, such as search engines (Google and Bing)
and various types of social networks (Facebook and Linkedin).

We have based our use cases on personal usage (such as searching in Amazon for one
of the authors of this paper). In addition, we have tried to reduce the mouse interaction,
as the screen size and navigation devices vary across different platforms. This way our
results could be applicable on many types of devices.

The JavaScript executed in web applications is fundamentally different from what is
executed in the JavaScript benchmarks e.g., with multiple calls to events which often
are defined as anonymous functions [Martinsen and Grahn 2011]. The number of calls

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:10 J.K Martinsen et al.

varies from 12 to over 10000, but the execution characteristics are the same. These
events are allowed to run for a predefined time.

To enhance reproducibility and to provide a deterministic and reproducible behavior
we automatically execute the use cases [Brand and Balvanz 2005]. The methodology
for these experiments is described in [Martinsen and Grahn 2011]

To validate the correctness of our TLS implementation, we have compared the exe-
cuted bytecode instructions with the committed bytecode instructions in our TLS im-
plementation and compared the return values and the written values against the se-
quential execution trace.

4.2. JavaScript functions in web applications
We base our experiments on the Squirrelfish JavaScript engine, where just-in-time
(JIT) compilation is optional. We use the interpretive mode, since Fig. 3 shows that
JIT compilation increases the execution time for 11 out of 15 use cases for Squirrelfish
(when JIT is enabled) and 8 out of 15 for Google’s JavaScript engine V8.

JIT compilation in Squirrelfish and V8 is measured on a set of benchmarks, and it
has been shown [Martinsen and Grahn 2011; Ratanaworabhan et al. 2010; Richards
et al. 2010] that these are unrepresentative for the workload in web applications.
Benchmarks are similar to well-known benchmarks in other fields with a large num-
ber of loops. Since there is a limit (i.e., 10 seconds in Firefox and 5 second for Internet
Explorer) to how long a JavaScript call can execute, the problem sizes that are com-
puted by the benchmarks are artificially small. If we compare the JavaScript execu-
tion in benchmarks to the JavaScript execution in web applications, we se that most
JavaScript calls are events from the web application, and specific JavaScript features
such as eval and anonymous functions are extensively used. This leads to little reuse
of already compiled code which is an importan feature of JIT. Therefore JIT compila-
tion speeds up the benchmarks, while it slows down web applications to a point where
it is slower with JIT compilation enabled [Martinsen et al. 2013].

These arguments are not against JIT, but that JIT is optimized towards the behav-
ior of unrepresentative benchmarks. This leads to increased execution time in web
applications.

Fig. 4, shows that the number of JavaScript function calls and their size in terms
of executed bytecode instructions in web applications varies (the mean max and min
of the size of executed functions is 68168.75 and 2.19 bytecode instructions over an
average of 15574.53 function calls). We can understand this from a nested speculation
point of view. Functions at a low depth contain many of the proceeding function calls
(i.e., Wordpress makes almost 80% of the functions call at depth 1 or 2), and as the
depth increases the number of executed bytecode instructions decreases. In the figure
below, we see that the most executed functions are anonymous function calls (i.e., for
instance youtube only makes anonymous function calls). This shows that JavaScript
in web applications is event driven. We also see that the functions that are not anony-
mous are seldom repeatedly called (i.e., for msn on average there are 104.64 distinct
function calls (out of 39 function names) and 15609 anonymous function calls)

As an argument against JIT in these cases, each function call gets compiled, however
most of the compiled code is not going to be re-executed and what is getting reused is
very short. Therefore it is not going to be beneficial to execute it as native code (even
if we optimize the native code).

4.3. Nested function calls
Initially the depth of a function is 1. If this function makes a call to a function, the
depth of the new function call will be 2, and if this function makes a function call, it
will have depth 3, etc.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:11

Fig. 3: The execution time of TLS in comparison to Squirrelfish and V8, both with just-
in-time compilation enabled [Martinsen et al. 2013] normalized to the execution time
of Squirrelfish without JIT.

Fig. 5 shows that the number of functions start to decrease after depth 3. The num-
ber of JavaScript functions calls decreases after depth 3, since calls to events in web
applications are only allowed to execute for a limited time (i.e., for youtube nearly 90%
of all the functions calls are made before depth 4). Most web browsers report that the
script is unresponsive if the JavaScript executes too long. As the execution progress,
so does the depth of function calls, therefore, JavaScript functions with a high depth
do not account for most of the execution time in web applications.

4.4. Testing environment
All experiments are conducted on a system running Ubuntu 10.04 equipped with 2
quadcore, Xeon R© 2Ghz processors with 4 MB cache each, i.e., a total of 8 cores, and 16
GB main memory. We have measured the execution time of the JavaScript execution
performed in the JavaScript engine. There are other factors, I/O and css processing
which affect the execution time of a web application. However, since one of the initial
arguments is the difference between the JavaScript execution behavior of benchmarks
and the JavaScript execution behavior in web applications, we focus on the JavaScript
execution time. We have also disabled the number of cores to 2 and 4, to see which
effects this has on the execution time.

5. EXPERIMENTAL RESULTS
In Section 5.1 we have limited the memory used for speculation, in Section 5.2 we
have limited the maximum number of concurrent threads, and in Section 5.3 we have
limited the speculation depth.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:12 J.K Martinsen et al.

Fig. 4: The mean length of the bytecode instructions executed in functions (upper) and
the number of anonymous function calls, number of regular function calls and unique
function names for the regular functions (lower).

5.1. Limiting the memory usage
In Fig. 6; (i) the execution time generally decreases with increased memory usage, and
(ii) most of the performance increase is achieved between 32 MB and 128 MB.

5.1.1. Execution time. Up to 128 MB, we get on average a 2× speedup compared to
sequential excution time. With more than 128 MB, 7 out of 15 web applications are
unable to further decrease the execution time.

Amazon is 1% faster than the sequential execution time for 4 MB, then the execution
time gradually increases to 64 MB (where it executes 54% slower than the sequential
execution time), before the execution time decreases gradually, up to when no limita-
tion is set, where it is faster 2% faster than the sequential execution time. This is the
only use case where TLS could increase the execution time. Comparing BBC to Ama-
zon, BBC executes 10% more bytecode instructions (which are the use case where the
difference in terms of executed bytecodes are the smallest), but Amazon makes 2× as
many function calls as BBC, and 44% of these function calls have a depth of 2. So when
we speculate, we could choose a function at a low depth, and speculate on several func-
tion calls from this function call, and use up all of the memory on that. As we increase
the memory we are allowed to speculate more and deeper, and therefore we are able to
find enough speculations to reduce the execution time. The reason for this behavior is
that many of the JavaScript functionalities read information from web-cookies, since

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:13

Fig. 5: The number of nested function calls up to 7 levels for Youtube, Facebook, Gmail
and Wordpress . We see as the depth of the nested function calls increases, the number
of function calls decreases. We also see that the largest number of function calls is
often not found at depth 1, but rather at depth 2 and depth 3. Each line represents a
function call, and we can see by tracing the lines that some of the function calls spawn
many new function calls. (For instance such as the number of function calls between
depth 2 and depth 3 in Facebook). The rightmost number at each depth (vertical y-axis)
indicates the number of function calls for each depth. From the Figures, the number of
function calls is the largest at a higher depth than 1.

JavaScript is used to customized the web application to the visiting users previous
behavior.

Fig. 6 shows that Youtube executes 1.86× as fast as the next fastest use cases,
wikipedia. In Youtube there is a large number of identical functions running as events
since Fig. 4 shows that all the function calls in this use case are anonymous. These
are related to updating and suggesting similar videos to the one the user is currently
watching. In Fig. 8 we execute 5.06× as many threads as the average number of
threads for this use case. In Fig. 9 the number of speculations is 1.69× as many as
the average number of speculations, but 31% of the average number of rollbacks.

The execution times of Bing and Wikipedia does not increase with more than 4 MB.
The number of functions in these use cases is 5.6% and 0.24% of the number of func-
tions for the other use cases, which explains why we are unable to take advantage of
more than 4 MB.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:14 J.K Martinsen et al.

Fig. 6: The speed up when we limit the available memory to 4,8,16,32,64, 128, 256,
512MB and with no restriction on the memory usage. The horizontal line in the fig-
ure indicates the sequential execution time for comparison average speed up is 2.52
(excluding the Youtube use case, it is 2.09).

These measurement indicates that although TLS requires memory, it is in many
cases sufficient with between 32 MB and 128 MB to double the speed up.

5.1.2. Overhead of saving checkpoint states and committing values. In Fig. 7 we have mea-
sured the relative execution time of TLS relative to the sequential execution time. We
have measured the time it takes to commit values and the time it takes to save states
when we limit the memory usage to 4, 8, 16, 32, 64, 128, 256 and 512 MB relative to
the execution time. Generally, the time it takes to save checkpoint states increases,
while the time it takes to commit values when a function returns decreases as the
memory usage increases. Therefore we spend less time committing data as the mem-
ory increases, but spend more time saving checkpoint states in case of a rollback. The
overhead for saving states varies between 24% and 1% of the total execution time, and
the overhead of committing values varies between 3% and 0.01%. Thus, the overhead
values for TLS is in general very small.

Since commiting values and saving states usually consist of a low total amount of the
cost of TLS, we have found that what is really expensive is to initialize the threadpool,
especially if the initializtion of new threads is spread out while executing. We also
found that the cost increases with an increasing number of cores.

5.1.3. No. of threads. In Fig. 8, 5 of the web applications are able to execute more than
50 threads. The functions in JavaScript can execute 2.19 bytecode instructions on a
function call. Since we use nested speculation each thread has to wait until the threads
it created returns. Due to the large number of function calls in web applications, and

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:15

Fig. 7: The relative improvement in execution time and the overhead of saving check-
point states and commiting values

Fig. 8: The largest number of threads when we limit the available memory to 4, 8, 16,
32, 64, 128, 256, 512MB and with no restriction on the memory usage

that functions are quite short; the number of threads running at certain points in time
varies greatly. For instance, for linkedin the average number of threads executing are
2.64, while the maximum number of threads is 36.

If we reduce the number of cores from 8 to 4, our results indicate that we need to use
2.3× as much memory to get the same speed up, as when we have all cores enabled.
This indicates that we need more memory to more memory to create a larger number
threads to have the same execution time with a lower number of cores.

5.1.4. No. of speculations and no. of rollbacks. Fig. 9 shows a clear correlation between an
increased memory and an increased number of speculations and an increased number
of rollbacks. For instance between 4MB and an unrestricted amount of memory we
get 16.12× as many speculations, and 26× as many rollbacks. However comparing the
number of speculations and the number of rollbacks, we find that few of the specula-
tions result in a rollback. For example, Imdb makes over 5000 speculations, with less
than 150 rollbacks. The behavior of other applications are similar.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:16 J.K Martinsen et al.

Fig. 9: The number of speculations (upper) and the number of rollbacks (lower) when
we limit the memory usage to 4, 8, 16, 32, 64, 128, 256, 512MB and with no restriction
on memory usage

5.1.5. Summary. It is sufficient with between 32 MB and 128 MB since this is respon-
sible for 97% of the performance improvements of TLS. In order to have the lowest
possible execution time it is important to have between 35.6 and 48.3 threads running
simultaneously, between 1267.6 and 3033.3 speculations and between 21.8 and 43.0
rollbacks. If the number of cores decreases, we need to use more memory to create
more threads, and decrease the execution time.

5.2. Limiting the number of threads
Fig. 10 shows that the optimal number of threads in order to achieve the lowest execu-
tion time is between 8 and 32 ant that 8 web applications we have the highest speed
up with 16 threads.

5.2.1. Execution time. We divide web application that are faster with TLS into three; (i)
when the execution time increases with an increased number of threads (e.g. Youtube),
(ii) when the execution time decreases with the number of threads, but after a certain
number of threads, the execution time increases (e.g. msn) and finally, (iii) when there
are spikes in the execution time, i.e., sudden improvements in execution time for a
certain number of threads, while the previous and the proceeding ones are lower (e.g.
Facebook).

The execution time decreases for Youtube (i.e.,it executes 3.89× faster with 128
threads than 4 threads). There are 1.69× speculations as the other use cases, and
32% of the rollbacks. By inspecting the executed bytecode and the JavaScript code we
see that 68% of them have the same JavaScript code, even though they are anonymous.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:17

Fig. 10: The speed up when we limit the number of threads to 2, 4, 8, 16, 32, 64, 128 and
with no restriction on the maximum number of threads (average speed up, excluding
the Youtube use case is 2.09).

These are great candidates for being speculatively executed, many of them are events,
and since they are anonymous function calls, they do not return anything.

If we limit the number of threads to 2 in Facebook, it executes 1.72× faster. We can
understand this from the following; by using two threads, the overhead is significantly
reduced (29% of when we do not limit the number of threads). In Facebook, we are
unable to find an increased number of threads executing concurrently when going from
32 to 128 threads. In Fig. 11 there is a 3.2× increase between the number of executing
threads going from 128 to no restriction on the number of threads. If we look at the
JavaScript execution in Facebook, there is a large number of executing functions at
each depth. We also see that in Fig. 5 the functions are distributed evenly at each
depth. For a limited number of threads, there is a limit to how many functions we
can use for nested speculation. Without such a limit, we are able to execute more
functions. This does not speed up the execution time. The memory usage of Facebook in
Fig. 16 suggests that the functions are small in terms of number of executed bytecode
instructions, and therefore commit quickly. This enables us to speculate on a lot of
functions, but the increase in speculation due to the depth of function in Fig. 5 limits
the gain in execution time (even though the number of available threads is very high).

For msn the performance increases with 2.86× from 2 threads to 16 threads. After
that, the performance drops to 64% when we do not limit the number of threads to 16
threads. The drop in execution time occurs for the following reason; This use case has
a large depth, which means a number of speculated functions are going to wait for the
function they speculated to return, before they can return. This causes the threadpool
to create and initialize more threads, which we showed in the previous section to have

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:18 J.K Martinsen et al.

a significant cost. If we limit the number of threads, new threads will not be created
by the threadpool at the same rate, which again reduces this overhead, since if all the
threads are occupied, the function call will be executed sequentially.

For the ones that are slower than sequential execution time, they use between 2 and
8 threads (Amazon is slower for 16 threads). We see in Fig. 12 that even though we
are using 2 threads, the number of rollbacks is almost the same as for 4 threads, while
the number of speculations is much higher for 4 than for 2 threads. This shows that
the cost of doing a rollback, along with the lack of speculation using 2 threads makes
the execution time slower than the sequential execution time. We see the contrary in
Wikipedia which has no rollbacks, and therefore the speed up is above the sequential
execution time. This suggests that the number of threads must be higher than 2 in
order to take advantage of TLS to decrease the execution time, which is an argument
for nested speculation.

5.2.2. The ability to take advantage of the threads. Fig. 11 shows that 13 of the use cases
are able to execute 32 threads concurrently when going from 16 to 32 threads. For 32 to
64, we are often able to use more than 32 threads, but only 5 use cases are able to use
64 threads. This shows that the real number of threads that we are able to execute con-
currently is between 32 and 64. Since we see that for up to 32 threads most use cases
are able to double the highest number of threads by adjusting the maximum number of
threads, there is rarely any point increasing the maximum number of threads beyond
32. Only Youtube and Wordpress are able to take advantage of a maximum number of
threads over 128. However, their speed up in execution time is negligible for this num-
ber of threads compared to 128 threads. Youtube is 4% faster, while Wordpress is only
able to use a large number of threads, not to improve the execution time, because as
we increase the number of threads, we are usually able to speculate deeper, however
the number of bytecode instructions executed at a high speculation depth is limited.
Therefore, there is a limit to how much we are able to speed up the execution time
even if we are able to execute more threads.

5.2.3. No. of speculations and rollbacks. Fig. 12 shows that the number of speculations
increases by 7.92× with an increasing number of threads. For 12 out of 15 web appli-
cations, the number of speculations does not increase when the maximum number of
threads is higher than 16. This shows that we are unable to find a sufficient number
of functions to execute concurrently.

From the number of rollbacks there is often an over 3× increase in the number of
rollbacks going from 2 to 8 threads. However, there is often a decrease in the number of
rollbacks as the number of threads increases from 16 up to no limitation on the number
of threads. This pattern is common; first the number of rollbacks increases, then the
number of rollbacks gradually decreases as the number of threads increases. In Fig. 12,
there is not a clear correlation between an increased number of speculations and an
increased number of rollbacks. This indicates that a larger number of threads does not
necessarily mean a larger number of rollbacks, In fact, it might mean the opposite, and
an increased number of threads might reduce the number of rollbacks. We get 3.33×
the speculations when we limit the number of threads to 4 compared to when we limit
the number of threads to 2. The significant change in the number of speculations is
because of the reduction in the number of available threads. In Fig. 4 we see that there
are many functions in web applications, but that they are small. Then we could end
up executing many small functions with a limited number of threads, which would
have a marginal effect on the execution time. This is the reason why we need a certain
number of threads to improve the execution time. If we reduce the number of cores on
the system (i.e., two or four) we end up using more threads to have the same execution
time as using eight cores.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:19

Fig. 11: The relative increase in the highest number of concurrent threads increasing
the maximum number of threads from 2 to 4, 4 to 8, 8 to 16, 16 to 32, 32 to 64, 64 to
128 and 128 to no limitation.

As we restrict the number of threads, the speculation depth decreases. This makes
us unables us take full advantage of nested speculation. In Fig. 12 the number of spec-
ulations increases as the number of threads increases. However, JavaScript TLS char-
acteristics in web applications also indicate that the number of bytecode instructions
decreases as the depth increases. This shows that as the depth increases, a large num-
ber of functions are able to execute simultaneously, and that the functions are often
able to commit quicker. This reduces the number of dependencies between speculated
functions, which in turn reduces the number of rollbacks. In addition the number of
anonymous functions of JavaScript in web applications show that there are few return
values.

5.2.4. Memory usage. In Fig. 13 we see that as we increase the number of threads we
increase the memory usage by 8.69×. For example, the extremes are msn and Amazon
that use more than 937MB and 1.5GB of memory if we do not limit the maximum
number of threads. One interesting use case is Google, where the memory increases
with 1024× when we do not restrict the number of threads. However, these threads
are very small in terms of bytecode instructions, but by not restricting the number of
threads, we are able to speculate multiple threads in a nested manner, which in turn
increases the memory usage.

The results show that uncritically increasing the number of threads only has the
lowest execution time for 3 out of 15 use cases, and has a high cost in terms of memory.
The optimal number of threads to decrease the execution time seems to be between 8

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:20 J.K Martinsen et al.

Fig. 12: The number of speculations (upper) and the number of rollbacks (lower) when
we limit the maximum number of threads to 2, 4, 8, 16, 32, 64, 128, and with no
restrictions on the number of threads.

Fig. 13: The memory usage when we limit the number of threads to 2, 4, 8, 16, 32, 64,
128 and with no restriction on the maximum number of threads.

and 32. A maximum number of threads set to less than 8 indicates that we are unable
to create a sufficient number of threads (e.g. linkedin).

5.2.5. Summary. We need no more than 32 threads to reduce the execution time. Only
2 use cases use more than 128 threads. The speed up from 64 threads and upwards
is negligible (i.e., at best 4% faster than when we restrict the number of threads to
64). This shows that there is a potential for extracting a large number of threads from
the JavaScript code in web applications. However, as the number of threads increases

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:21

the overhead of having a larger number of threads increases the amount of memory
used for speculation which again reduces the improved execution time along with a
decreasing potential of speculation as the depth increases, since the functions are so
short, we are often able to re-use threads. One interesting observation is, if we reduce
the number of cores, we need to extract more threads to have the same speedup.

5.3. Limiting the speculation depth
The most important observations in this section are; (i) we need to use nested specu-
lation in order to decrease the execution time and (ii) that a speculation depth of 16
leads to the best perfromance.

Fig. 14: The speed up when we limit the speculation depth to 2, 4, 8, 16, 32, and with
no restriction on the depth (average speed up when we exclude the Youtube use-case is
2.34).

5.3.1. Execution time. Fig. 14 shows that nested speculation is necessary to improve
the execution time

With a speculation depth of 2 for Gmail, it is 52% faster than when we do not limit
the speculation depth. In Fig. 15 the number of speculations for Gmail is the highest
for speculation depth 2, and the number of rollbacks is the lowest. The memory usage
is lower for depth 2, which decreases the overhead of TLS. The behavior in Gmail is
caused by much JavaScript functionality (compared to some of the other use cases)
executed when the page loads. Further JavaScript execution is caused by more user
interaction. Our use cases have reduced user interaction, therefore we would probably
see at better effect with more user interactions. In Fig. 5 most of the functions are
found at depth 2 and 3. This explains the large speed up of Gmail at depth 2.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:22 J.K Martinsen et al.

13 of the 15 use cases have the largest speed up with speculation depths set to 4,
8, or 16. A speculation deeper than 16 only gives the highest speed up for Blogspot.
This means that the cost of speculating deeper increases and the potential speed up
by being able to speculate decreases.

Fig. 15: The number of speculations (upper) and rollbacks (lower) when we limit the
depth to 2, 4, 8, 16, 32, and with no restriction on the depth.

5.3.2. No. of speculation and no. of rollbacks. Fig. 15 shows that there is a relationship
between an increased speculation depth and an increased number of speculations, al-
though there is a limit to the number of speculations we are able to make with a
speculation deeper than 8. We execute fewer and fewer bytecode instructions as the
speculation depth increases ,since the number of JavaScript functions decreases as
the speculation depth increases (Fig. 5). This means that the potential gain of specu-
lation decreases, as the number of functions and the size of each function decreases,
while we save more states. Therefore, the speed up rarely increases with a speculation
depth higher than 4.

For a speculation depth over 8, the number of rollbacks decreases as the specula-
tion depth increases. Since the size of the functions decreases, they commit back to the
parent faster than they would if the size of the function was bigger. Given that a func-
tion speculates on a new function (i.e., nested speculation) it has fewer dependencies
between itself and the function it speculates on, than there is between two functions
which have the same depth (i.e., for instance function calls that are made as part of
a loop). These functions, rarely return a value, or at least one that we were unable to
predict correctly. This is because many of these functions read elements in the DOM
tree.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:23

Fig. 16: The memory usage when we limit the speculation depth to 2, 4, 8, 16, 32, and
with no limit on the depth.

5.3.3. Memory usage. In Fig. 16 we see that an increased speculation depth means
more speculations (Fig. 5), and as a result more checkpoints states must be saved.
This means that we get an increased overhead of saving the checkpoint states, relative
to a lower depth. However there are a lower number of variable checks as the number
of bytecode instructions decreases as the depth increases, and the functions commit
earlier.

5.3.4. Summary. Nested speculation speeds up the execution, but any benefit of spec-
ulating deeper than 16 is rare. Since the size of the function decreases as we speculate
deeper, then the cost of speculation outweighs the potential gain of executing the func-
tion in parallel. One interesting observation is that as the speculation depth increases,
then for 12 out of 15 use cases, the number of rollbacks is reduced.

6. DISCUSSION
As observed in Section 5.1 and Section 5.3 both Amazon use cases can be slower than
the sequential execution. This is because when we limit the memory, we are often
unable to speculate deep enough, which in turn could slow down the execution. When
we increase the speculation depth, the execution time improves. In Section 5.2 we
limit the number of threads, then the same use cases are often able to find the correct
threads to speculate on, and initially the overhead is reduced so we get the highest
speed up.

When we increase the depth, we find more functions to speculate on; therefore we
save more checkpoint states. However the size when we speculate with an increased
depth is decreasing compared to a lower depth, as the number of executed JavaScript
bytecode instructions is decreasing. The number of variable checks for each commit is
decreasing; as the depth increases (we see this in terms of reduction of rollbacks with
a high depth). There is a significant increase in overhead related to commiting going
from depth 1 to depth 4, but for higher depths this overhead is reduced. There is also
a significantly higher cost of a rollback at a low depth, than at a high depth.

To get the bound of improved execution time of JavaScript using TLS in web applica-
tions, we compare our results against the results of [Fortuna et al. 2010]. Their average
speed up is 8.9× faster which is clearly faster than the results in this paper, but they
make their argument from a theoretical point of view. Our use cases are methodolog-
ically performed with a focus on reproducibility [Martinsen and Grahn 2011]. This
causes our use cases to have less JavaScript execution, and fewer JavaScript functions
to speculate on.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



42:24 J.K Martinsen et al.

Our study is based on a real implementation of TLS in a state-of-art JavaScript
engine. We see from the speed up figures that we could benefit from a larger number
of cores to increase the speed up for some of the use cases. For the other use cases,
they are limited due to the limited user interaction, and thereby reduced JavaScript
execution. For Youtube, we claim that our TLS solution would further speed up with a
larger number of cores, as the execution time decreases when we disable the number of
cores to 2 or 4, on our 8 core computer, for other use cases the gain of a larger number
of cores is not nearly as high. There is also a cost (in terms of saving the checkpoint
state) for each speculation.

7. CONCLUSION
We must use nested speculation in order to speed up the execution time. 16 threads,
32MB–128 MB of memory, and a speculation depth between 4–16 levels often result in
the highest speed up

TLS is a suitable technique for increasing the performance in web applications on
devices with multicore processors. From the number of speculations and the number
of threads running concurrently, there is an indication that there is a potential for a
higher speed up with an increased number of cores.

REFERENCES
ALEXA. 2010. Top 500 sites on the web. http://www.alexa.com/topsites.
BERRY, M., CHEN, D., KOSS, P., KUCK, D., LO, S., PANG, Y., ROLOFF, R., SAMEH, A., CLEMENTI, E., CHIN,

S., SCHNEIDER, D., FOX, G., MESSINA, P., WALKER, D., HSIUNG, C., ADN K. LUE, J. S., ORZAG, S.,
SEIDL, F., JOHNSON, O., SWANSON, G., GOODRUN, R., AND MARTIN, J. 1989. The PERFECT Club
Benchmarks: Effective performance evaluation of supercomputers. Tech. Rep. CSRD-827, Center for
Supercomputing Research and Development, Univ. of Illinois, Urbana-Champaign. May.

BHOWMIK, A. AND FRANKLIN, M. 2002. A general compiler framework for speculative multithreading. In
SPAA ’02: Proc. of the 14th ACM Symp. on Parallel Algorithms and Architectures. 99–108.

BRAND, J. AND BALVANZ, J. 2005. Automation is a breeze with autoit. In SIGUCCS ’05: Proc. of the 33rd
Annual ACM SIGUCCS Conf. on User services. ACM, New York, NY, USA, 12–15.

BRUENING, D., DEVABHAKTUNI, S., AND AMARASINGHE, S. 2000. Softspec: Software-based speculative
parallelism. In FDDO-3: Proceedings of the 3rd ACM Workshop on Feedback-Directed and Dynamic
Optimization.

CHAUDHRY, S., CYPHER, R., EKMAN, M., KARLSSON, M., LANDIN, A., YIP, S., ZEFFER, H., AND TREM-
BLAY, M. 2009. Rock: A High-Performance Sparc CMT Processor. IEEE Micro 29, 2, 6–16.

CHEN, M. K. AND OLUKOTUN, K. 1998. Exploiting method-level parallelism in single-threaded Java pro-
grams. In Proc. of the 1998 Int’l Conf. on Parallel Architectures and Compilation Techniques. 176.

CHEN, M. K. AND OLUKOTUN, K. 2003. The Jrpm system for dynamically parallelizing Java programs. In
ISCA ’03: Proc. of the 30th Int’l Symp. on Computer Architecture. 434–446.

CINTRA, M. AND LLANOS, D. R. 2003. Toward efficient and robust software speculative parallelization on
multiprocessors. In PPoPP ’03: Proc. of the 9th ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming. 13–24.

FORTUNA, E., ANDERSON, O., CEZE, L., AND EGGERS, S. 2010. A limit study of javascript parallelism. In
2010 IEEE Int’l Symp. on Workload Characterization (IISWC). 1–10.

GOOGLE. 2012. V8 JavaScript Engine. http://code.google.com/p/v8/.
HERTZBERG, B. AND OLUKOTUN, K. 2011. Runtime automatic speculative parallelization. In Proc. of the

9th Annual IEEE/ACM Int’l Symp. on Code Generation and Optimization (CGO). 64–73.
HU, S., BHARGAVA, R., AND JOHN, L. K. 2003. The role of return value prediction in exploiting speculative

method-level parallelism. Journal of Instruction-Level Parallelism 5.
JAVASCRIPT. 2010. http://en.wikipedia.org/wiki/JavaScript.
KAZI, I. H. AND LILJA, D. J. 2000. JavaSpMT: A speculative thread pipelining parallelization model for

java programs. In IPDPS’00: Proceedings of the 14th International Parallel and Distributed Processing
Symposium. IEEE Computer Society, Los Alamitos, CA, USA, 559.

KAZI, I. H. AND LILJA, D. J. 2001. Coarse-grained thread pipelining: A speculative parallel execution model
for shared-memory multiprocessors. IEEE Trans. on Parallel and Distributed Systems 12, 9, 952–966.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.



The Effects of Parameter Tuning in Software Thread-Level Speculation in JavaScript Engines 42:25

LATTNER, C. AND ADVE, V. 2004. Llvm: A compilation framework for lifelong program analysis & transfor-
mation. In Proceedings of the international symposium on Code generation and optimization: feedback-
directed and runtime optimization. CGO ’04. IEEE Computer Society, Washington, DC, USA, 75–.

MARTINSEN, J. K. AND GRAHN, H. 2010. An alternative optimization technique for JavaScript engines. In
Third Swedish Workshop on Multi-Core Computing (MCC-10). 155–160.

MARTINSEN, J. K. AND GRAHN, H. 2011. A methodology for evaluating JavaScript execution behavior
in interactive web applications. In Proc. of the 9th ACS/IEEE Int’l Conf. On Computer Systems And
Applications. 241–248.

MARTINSEN, J. K., GRAHN, H., AND ISBERG, A. 2011. A comparative evaluation of JavaScript execution
behavior. In Proc. of the 11th Int’l Conf. on Web Engineering (ICWE 2011). 399–402.

MARTINSEN, J. K., GRAHN, H., AND ISBERG, A. 2013. Using speculation to enhance javascript performance
in web applications. Internet Computing, IEEE 12, 4, 37–45.

MEHRARA, M., HSU, P.-C., SAMADI, M., AND MAHLKE, S. 2011. Dynamic parallelization of JavaScript
applications using an ultra-lightweight speculation mechanism. In Proc. of the 17th Int’l Symp. on High
Performance Computer Architecture. 87–98.

MEHRARA, M. AND MAHLKE, S. 2011. Dynamically accelerating client-side web applications through decou-
pled execution. In Proc. of the 9th Annual IEEE/ACM Int’l Symp. on Code Generation and Optimization
(CGO). 74–84.

MICKENS, J., ELSON, J., HOWELL, J., AND LORCH, J. 2010. Crom: Faster web browsing using speculative
execution. In Proc. of the 7th USENIX Symp. on Networked Systems Design and Implementation (NSDI
2010). 127–142.

MOZILLA. 2012. SpiderMonkey – Mozilla Developer Network. https://developer.mozilla.org/en/
SpiderMonkey/.

OANCEA, C. E., MYCROFT, A., AND HARRIS, T. 2009. A lightweight in-place implementation for software
thread-level speculation. In SPAA ’09: Proc. of the 21st Symp. on Parallelism in Algorithms and Archi-
tectures. 223–232.

PICKETT, C. J. F. AND VERBRUGGE, C. 2005a. SableSpMT: a software framework for analysing speculative
multithreading in java. In PASTE ’05: Proc. of the 6th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. 59–66.

PICKETT, C. J. F. AND VERBRUGGE, C. 2005b. Software thread level speculation for the Java language and
virtual machine environment. In LCPC ’05: Proc. of the 18th Int’l Workshop on Languages and Compilers
for Parallel Computing. 304–318. LNCS 4339.

PRABHU, M. K. AND OLUKOTUN, K. 2005. Exposing speculative thread parallelism in SPEC2000. In Proc.
of the 10th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming. 142–152.

RATANAWORABHAN, P., LIVSHITS, B., AND ZORN, B. G. 2010. JSMeter: Comparing the behavior of
JavaScript benchmarks with real web applications. In WebApps’10: Proc. of the 2010 USENIX Conf.
on Web Application Development. 3–3.

RENAU, J., STRAUSS, K., CEZE, L., LIU, W., SARANGI, S. R., TUCK, J., AND TORRELLAS, J. 2006. Energy-
efficient thread-level speculation. IEEE Micro 26, 1, 80–91.

RENAU, J., TUCK, J., LIU, W., CEZE, L., STRAUSS, K., AND TORRELLAS, J. 2005. Tasking with out-of-order
spawn in tls chip multiprocessors: Microarchitecture and compilation. In In ICS. 179–188.

RICHARDS, G., LEBRESNE, S., BURG, B., AND VITEK, J. 2010. An analysis of the dynamic behavior of
JavaScript programs. In PLDI ’10: Proc. of the 2010 ACM SIGPLAN Conf. on Programming Language
Design and Implementation. 1–12.

RUNDBERG, P. AND STENSTRÖM, P. 2001. An all-software thread-level data dependence speculation system
for multiprocessors. Journal of Instruction-Level Parallelism, 1–28.

STANDARD PERFORMANCE EVALUATION CORPORATION. 2000. SPEC CPU2000 v1.3.
http://www.spec.org/cpu2000/.

STEFFAN, J. G., COLOHAN, C., ZHAI, A., AND MOWRY, T. C. 2005. The STAMPede approach to thread-level
speculation. ACM Transactions on Computer Systems 23, 3, 253–300.

TIAN, C., FENG, M., NAGARAJAN, V., AND GUPTA, R. 2008. Copy or discard execution model for speculative
parallelization on multicores. In Proceedings of the 41st annual IEEE/ACM International Symposium
on Microarchitecture. MICRO 41. IEEE Computer Society, Washington, DC, USA, 330–341.

W3C. 2011. Web Workers — W3C Working Draft 01 September 2011. http://www.w3.org/TR/workers/.
WEBKIT. 2012. The WebKit open source project. http://www.webkit.org/.

ACM Transactions on Embedded Computing Systems, Vol. X, No. Y, Article 42, Publication date: March 2013.


