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Abstract

Two important trends in computer systems are that applications are moved to
the Internet as web applications, and that computer systems are getting an in-
creasing number of cores to increase the performance. It has been shown that
JavaScript in web applications has a large potential for parallel execution despite
the fact that JavaScript is a sequential language. In this thesis, we show that
JavaScript execution in web applications and in benchmarks are fundamentally
di�erent and that an e�ect of this is that Just-in-time compilation does often not
improve the execution time, but rather increases the execution time for JavaScript
in web applications. Since there is a signi�cant potential for parallel computa-
tion in JavaScript for web applications, we show that Thread-Level Speculation
can be used to take advantage of this in a manner completely transparent to
the programmer. The Thread-Level Speculation technique is very suitable for
improving the performance of JavaScript execution in web applications; however
we observe that the memory overhead can be substantial. Therefore, we propose
several techniques for adaptive speculation as well as for memory reduction. In
the last part of this thesis we show that Just-in-time compilation and Thread-
Level Speculation are complementary techniques. The execution characteristics
of JavaScript in web applications are very suitable for combining Just-in-time
compilation and Thread-Level Speculation. Finally, we show that Thread-Level
Speculation and Just-in-time compilation can be combined to reduce power usage
on embedded devices.
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Chapter 1
Introduction

Two important trends in computer systems are that applications are moved to the
Internet as web applications, and that computer systems are getting an increasing
number of cores to increase the performance.

In this thesis we propose Thread-Level Speculation as a technique to increase
the performance of JavaScript in web applications by taking advantage of mul-
tiple cores without the programmer's awareness. This means that the di�culty
of taking advantage of parallel hardware is completely transparent for the web
application programmer.

1.1 Parallel computation and multiple cores

Increasing the number of cores is a method to decrease the execution time of
computer systems [73]. This applies to both large computer systems (such as
servers) and embedded computer systems (such as smartphones).

The challenge with this trend is that in order to take advantage of multiple
cores, the software (such as the operating system and applications) must be
made into parallel programs [33]. Parallel programming is considered to be one
of the most di�cult programming �elds within computer science [92]. However,
the challenges are not solely dependent on the experience and the skills of the

1



programmer, but more the inherent di�culties with parallel programming. For
instance:

(i) How do we decompose a problem into sub problems that we can run in
parallel?

(ii) How should the program be designed in order to remain scalable when we
increase/decrease the number of cores (i.e., if 4 cores lead to a speedup of
4, how do we ensure that 8 cores lead to a speedup of 8?)

(iii) How do we e�ciently debug parallel programs? Scheduling of the parallel
program is made by the operating system, so this means that di�erent parts
of the program can run in di�erent order each time the program is executed.

(iv) The programmer might also run into problems such as deadlocks, livelocks
and starvations. A deadlock is when two processors wait for each other
to release a resource, and we therefore get a circular dependency and the
program appears to be locked. A livelock is similar to a deadlock, only that
even though we need to wait for a resource, the resources changes constantly.
A starvation is similar to a deadlock; a process waits forever for a resource,
without getting one.

2



For instance, in Figure 1.1 we show an example of a dual-quadcore multi-
ple core computer where these cores read and write to the same memory. This
makes programming easier, but introduces new problems which make program-
ming more di�cult, as we must for instance make sure that none of the cores
write to the same part of the memory, at the same point in time. Also as we saw
in the list of di�culties, as the number of cores increases it can be di�cult to
scale to performance.

However, the performance potential of multicore processors has been demon-
strated in several applications. Examples of applications are visualization, videos,
3D graphics, computer games, web servers and database systems.

Figure 1.1: An example schematic of a dual-quadcore architecture with two CPUs
which contain 4 cores each, however all cores have access to the same memory.
It is usually up to the programmer to take advantage of the cores.

3



1.2 JavaScript and web applications

Web applications are to a large extent powered by JavaScript. JavaScript is an
object based scripting language where runtime evaluation is done in a JavaScript
engine. JavaScript's popularity has naturally grown with the success of the web.
Initially it was a programming language for adding interactivity to the web ap-
plication, thereby reducing the need for server side communication. It was for in-
stance used to validate forms in a web application. JavaScript in web applications
has since then become increasingly complex as AJAX (Asynchronous JavaScript
and XML) programming has transformed static web pages into responsive ap-
plications. In addition JavaScript signi�cantly eases the distribution of software,
as web applications are dependent on a modern web browser, and therefore are
virtually platform independent. However, from a parallel programming point of
view, JavaScript is a sequential programming language.

Web applications are applications where parts are executed in a web browser
and delivered through the web. Web applications have the advantage that they
require no additional installation, will run on any machine that can run a modern
web browser, and provide information from the cloud. Smartphones, such as the
Sony Xperia Z1 phone, increase the number of Internet users, further increasing
the importance and the reach of web applications. Web applications often com-
bine client and server side functionality. However in this thesis we focus on the
client side functionality.

Much of the client side functionality is written in the sequential language
JavaScript, which in turn is executed in a JavaScript engine. As we see in Fig-
ure 1.2 there are other client side workloads that take time, other than executing
JavaScript, for instance parsing the cascading style sheets (CSS) and rendering
the web page on the web browser. However the importance of JavaScript is ap-
parent from the execution time of each JavaScript function call and the number
of function calls.

JavaScript has features that are similar to features in functional programming
languages like Haskell (such as anonymous and eval functions) while it has a
syntax similar to C and Java. To evaluate the JavaScript performance a set of
benchmarks has been developed. Benchmarks often solve a test problem, and
the problems these benchmarks solve are similar to problems in benchmarks used
in other �elds (for instance the wellknown SPEC 2000 benchmarks suite, and
the V8 JavaScript benchmarks from Google both contain a raytracer). During
the last years there has been an uno�cial race to have the fastest web browser,
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Figure 1.2: The time it takes and the number of calls it takes to render, execute
JavaScript code and parse CSS de�nitions for 15 well known web applications.

and therefore there has been an increased focus on improving the performance of
JavaScript engines.

Ratanaworabhan et al. [83] show that the established JavaScript benchmarks
often misrepresent the actual execution behavior of real life web applications.
Examples of factors that might lead to misleading conclusions are that the bench-
marks have a large number of loops, non-string objects in web applications are
extremely short lived and that the web application calls a signi�cant number of
events. Richards et al. [89] show that the dynamic features of JavaScript are
used extensively in web applications. The benchmarks do not use these features
and they emulate the behavior of static typed programs. It is in turn pointed
out that this might lead to a misleading understanding of the execution be-
havior of JavaScript. Zorn et al. [84] evaluate the workload characterization of
benchmarks and web applications and show that there are signi�cant di�erences
between them, such as di�erent kinds of function types and di�erent types of
executed bytecode instructions.

5



Fortuna et al. [25] show that there is, theoretically speaking, a signi�cant
potential for parallel execution of client side computation in web applications,
with up to 45 times speed up for the Google Wave web application. However,
this is strictly a theoretical study, with no speci�c implementation where they
implement their ideas in a real life JavaScript engine. While Fortuna et al.
show that there is a potential for huge speedups with parallel execution in web
applications for JavaScript, they base their argument on a theoretical model,
rather than an implementation. They also do not have a strong methodological
approach, and rather observe the executed JavaScript code in order to decide on
a parallel potential.

JavaScript and web applications have support for multicore programming with
Web workers [104] which uses a message passing memory model for communica-
tion between the processes. However, it is still the programmers' responsibility
to �nd and take advantage of the parallelism in web applications for Web workers
and Web workers' intention is to increase the response of the web application,
rather than to speed up the execution time.

To our knowledge, there is no-one who has developed a Thread-Level Specu-
lation system for JavaScript engines which dynamically extracts parallism, and
consistently improves the execution time.

1.3 An introduction to Thread-Level Speculation

One attempt to make parallel programming easier is Thread-Level Speculation.
The idea is to dynamically extract parallelism from sequential programs. This is
done by speculatively executing segments of the program in parallel. To ensure
the program correctness, we need to check for data con�icts between parallel
segments. If a con�ict occurs we need to rollback the program to a previous
point of execution where there are no con�icts. Then, we re-execute from this
point sequentially. Obviously we want to avoid re-executing parts of the program,
to speed up the execution time. In Figure 1.3, to the leftmost we see the program
that is a candidate for speculation. Right to the source code we see the program
executing sequentially (i.e., it calls function f, which again calls function g). In
the rightmost �gure, we execute the program speculatively, when we encounter
the function call g. We try to execute this in parallel, and later join this execution
back to f.

Thread-Level Speculation has been done both in hardware, e.g., [14, 85, 98],
and software, e.g., [13, 41, 78, 81, 91]. Two main approaches exist: loop-level
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Figure 1.3: A schematic of the workings of Thread-Level Speculation.

parallelism and method-level speculation. In loop-level parallelism, each loop
iteration is assigned to a thread. Then, we can (ideally) execute as many it-
erations in parallel as we have processors. However there are limitations; data
dependencies may limit the number of iterations that can be executed in par-
allel. In method-level speculation, we execute function calls as threads. In this
approach, we must correctly predict the return values when we speculate as well
as the writes and reads that cause the speculative program to violate the sequen-
tial semantics. The last two are typically detected when the values associated
with two function calls are committed back to their parent thread. For both
approaches the memory requirements and run-time overhead for checkpointing
and detecting data dependencies can be considerable.

Between two concurrent threads we can have three types of data dependen-
cies: Read-After-Write (RAW),Write-After-Read (WAR), andWrite-After-Write
(WAW). A TLS implementation must be able to detect these dependencies dur-
ing runtime by using information about read and write addresses from each loop
iteration. A key design parameter for a TLS system is the precision of at what
granularity it can detect data dependency violations.

When a data dependency violation is detected the execution must be aborted
and rolled back to a safe point in the execution. Thus, all TLS systems need
a checkpoint mechanism and a rollback mechanism. In order to be able to do
rollbacks, we need to store both speculative updates of data as well as the original
data values. As a result, this bookkeeping results in both memory overhead as
well as run-time overhead. In order for a TLS system to be e�cient, the number
of rollbacks must be low.
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A key design parameter for a TLS system is the data structures used to
track and detect data dependence violations. The more precise tracking of data
dependencies, the more memory overhead is required. Unfortunately, one e�ect of
imprecise dependence detection is the risk of a false-positive violation, i.e., when
a dependence violation is detected when no actual (true) dependence violation is
present. As a result, unnecessary rollbacks need to be done, which decreases the
performance.

TLS implementations can di�er depending on whether they update data spec-
ulatively 'in-place', i.e., moving the old value to a bu�er and writing the new value
directly in the memory, or in a special speculation bu�er. Updating data in-place
usually results in a higher performance if the number of rollbacks is low, but a
lower performance when the number of rollbacks is high since the cost of doing
rollbacks is high.

1.3.1 Software-Based Thread-Level Speculation

There exists a number of di�erent software-based Thread-Level Speculation (TLS)
proposals, and we summarize some of the most important ones in Table 1.1. One
striking observation is that all of these studies are with applications written in
C, FORTRAN, or Java and that these studies are focusing most of their e�ort
around the SPEC and Perfect Club benchmark series. We also see that none of
them are made for a dynamically executing environment, such as JavaScript.
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Table 1.1: Examples of previous work on software Thread-Level Speculation

Author Speedup #cores Benchmark Summary Language
Chen and Olukotun
show [15, 16]

3.7�7.8 16 SPECjvm98 [95]
(with others)

method-level C and
JAVA

Bruening et al. [13] over 5 8 SPEC95FP and
SPEC92

applicable on
while loops

C

Rundberg and
Stenström [91]

10 16 Perfect Club
Benchmarks [8]

minimizing the
overhead

C

Kazi and Lilja [41] 5�7 8 Perfect Club
Benchmarks [8]

exploit coarse-
grained paral-
lelism

C

Bhowmik and
Franklin [9]

1.64�5.77 6 SPEC CPU95,
SPEC
CPU2000,
and Olden

exploits loop
and non-loop
parallism

C

Cintra and
Llanos [17]

16 16 SPEC CPU2000
[96] and Perfect
Club [8]

using a sliding
window with
loops

C

Renau et al. [86] 3.7�7.8 16 SPEC CPU2000
Benchmarks [96]

method-level C

Picket and Ver-
brugge [80, 81]

2 4 SPECjvm98 [95] method-level JAVA

Kejariwal et al. [42] 2.5 SPEC CPU2000
Benchmarks [96]

Theoretical
study

C and
FORTRAN

Hertzberg and
Olukotun [34]

2.04 4 SPEC CPU2000
Benchmarks [96]

method-level C

Hertzberg and
Olukotun [34]

3�4, 2�3,
and 1.5�
2.5

4 SPEC CPU2006
Benchmarks [97]

method-level JAVA
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1.3.2 TLS for managed programming languages

Mehrara and Mahlke [67] show how to utilize multicore systems in JavaScript
engines. They target trace-based JIT-compiled JavaScript code, where the most
common execution �ow is compiled into an execution trace. Then, runtime checks
(guards) are inserted to check whether control �ow etc. is still valid for the trace
or not. They execute the runtime checks (guards) in parallel with the main
execution �ow (trace), and only have one single main execution �ow.

In [66] they introduce a lightweight speculation mechanism that focuses on
loop-like constructs in JavaScript, and if the loop contains a su�cient workload, it
is marked for speculation. As this code used the trace features of Spidermonkey,
a selective form of speculation is employed. They found that they were able to
make speculations 2.8 times faster for well known JavaScript benchmarks.

Mickens et al. [68] suggest an event-based speculation mechanism which is de-
ployed as a JavaScript library called Crom. Crom clones regions of the JavaScript
code that are executed speculatively, and in case of a misspeculation the original
state can be restored. However, their main goal is to enhance the responsiveness
of web applications.

From the previous work, to our knowledge, no-one has used Thread-Level
Speculation to take advantage of the parallel potential of JavaScript in web ap-
plications (which Fortuna et al. proposes).

1.4 Research questions

The main objective of this thesis is how to take advantage of multicore processors
for JavaScript in web applications with Thread-Level Speculation.

Research question 1 and research question 2 focus on how to evaluate the
execution behavior of JavaScript in web applications and benchmarks.

Research question 1: What method should we use to compare the execution be-
havior of the benchmarks with the web applications?

Research question 2: What are the di�erences in execution behavior between the
benchmarks and the web applications?
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JavaScript is a sequential programming language and to take advantage of
multicore systems we investigate Thread-Level Speculation as an option in re-
search question 3. In research question 4 we evaluate the e�ects of respeculating
on functions that have previously caused a misspeculation and suggest three
heuristics to adaptively respeculate.

Research question 3: How do we implement Thread-Level Speculation in a inter-
preting JavaScript engine?

Research question 4: What is the performance improvement potential with Thread-
Level Speculations for JavaScript in web applications, and
which are the main limiting factors?

In research question 5, we look at the memory used during Thread-Level
Speculation, in case a speculation results in a rollback. Finally a very popular
technique to reduce the execution time in interpretive JavaScript engines is Just-
in-time compilation. In research question 6, we examine whether this technique is
advantageously combined with Thread-Level Speculation, and in research ques-
tion 7 we evaluate the e�ects on power, by using Thread-Level Speculation on an
embedded device.

Research question 5: Can we reduce the memory usage and improve the perfor-
mance of Thread-Level Speculation by adaptively adjusting
important parameters?

Research question 6: Is a Just-in-time compilation based JavaScript engine ap-
plicable for Thread-Level Speculation to improve the per-
formance of web applications?

Research question 7: What are the e�ects on power consumption when using
Thread-Level Speculation on embedded devices.

Research question 1 and research question 2 are discussed in paper I and paper
II, where we perform the evaluations of the execution behavior of popular web
applications and benchmarks. We perform the evaluations by using the Firebug
JavaScript pro�ler and a modi�ed version of WebKit.

Research question 3 is discussed in paper III and paper IV, where we im-
plement Thread-Level Speculation in two JavaScript engines and evaluate these
implementations using popular web applications and the V8 benchmark suite.
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Research question 4 is further discussed in paper V where we have developed a
heuristic for when to speculate or not.

Research question 5 is discussed in paper VI, where we adjust the amount
of memory, the number of threads and the depth of speculation during Thread-
Level Speculation. In paper VII we use the measurements of paper VI to develop
a heuristic which adaptively tunes parameters to reduce the memory usage of
Thread-Level Speculation in JavaScript engines.

Research question 6 is discussed in paper VIII, where we show that Thread-
Level Speculation and Just-in time compilation are two complementary tech-
niques, and that we can take advantage of Thread-Level Speculation with a
JavaScript engine with Just-in-time compilation for web applications.

Research question 7 is discussed in paper XI where we show that we can
use Thread-Level Speculation and Just-in time compilation to both reduce the
execution time, and the power usage on embedded devices.

1.5 Research methodology

1.5.1 Measuring the Execution Behavior of JavaScript bench-

marks and web applications

Research question 1 and research question 2 address how to evaluate the execution
behavior of the benchmarks and the web applications. We have created a set of
use cases which illustrate the behavior of popular web applications. We have used
two methods to evaluate this; the JavaScript pro�ler �rebug [23] and a modi�ed
version of Webkit and Squirrel�sh.

Firebug evaluates the JavaScript code, such as function names, function types
and the amount of time spent executing each function. By modifying Webkit and
Squirrel�sh, we are able to evaluate additional information such as the executed
bytecode instructions, what kind of bytecode instructions that are executed, and
the execution time from outside of the JavaScript engine.

A key challenge when evaluating the execution time, function names and
types, and the bytecode instructions of web applications, is to make the results
reproducible. Web applications do not have a clear start and end state. For
instance, if we evaluate the JavaScript execution in Twitter, its execution behavior
might be altered by external events, such as server side functionalities, which are
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beyond our control. If we evaluate the execution behavior of Twitter twice, the
web application might receive di�erent external events, which again will a�ect
the evaluation of the execution behavior. To increase the reproducibility, we have
reduced the amount of user interaction, and scripted prede�ned behavior with
Autoit [11].

JavaScript is a dynamically typed language, with functional features such as
anonymous functions and eval calls and executed JavaScript might be di�erent
for two identical use cases. To cope with this, we have executed each use case 10
times, and selected the median result out of the 10 for comparison. To evaluate
the JavaScript functionalities, we have selected �ve di�erent applications which
use JavaScript:

(i) A set of four established benchmark suites for JavaScript, Google V8, Sun-
Spider, Dromaeo and JSBenchmark [29, 107, 71, 39].

(ii) The top 100 most visited web applications from the Alexa list [77].

(iii) A set of use cases on a selection of social networks [109].

(iv) A selection of 15 popular web applications, selected based on their popu-
larity.

(v) The top 109 web applications in HTML5 from the JS1K competition [38].

We have performed the measurements on a Linux based computer with a
modi�ed version of Webkit and 16 GB of internal memory. The use cases, which
are scripted, are executed by opening a terminal into the Linux computer from a
Windows computer, which executes to Autoit scripts. This way, we ensure that
the behavior of the script is not distrupting the execution on the Linux computer.

1.5.2 Implementing and evaluating Thread-Level Specula-

tion

Research question 3 and research question 4 address the implementation and
performance of Thread-level Speculation in JavaScript. For research question
3 and research question 4 we have made two implementations of Thread-Level
Speculation; One in the Rhino JavaScript engine [20], and the second one in
the Squirrel�sh engine (which is part of Webkit) [108]. The Rhino engine is
a stand alone JavaScript engine implemented in Java, and is not part of any
o�cial browser implementation. In addition, it lacks some of the functionalities
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needed to fully support certain workloads in web applications. The Squirrel�sh
JavaScript engine and Webkit are available on a number of platforms (for instance
the Sony Xperia Z1 phone), and the engine supports web applications

To implement Thread-Level Speculation, we use method-level speculation;
therefore we have done the following: whenever we encounter a function call, we
have created a new thread for this function call. We also store the state before we
execute the function as a thread. If this thread is in con�ict with any of the other
threads, we use the stored information to rollback. Once its associated execution
completes, the results of the execution are merged to the main thread. The main
di�erence between the two implementations is that the Squirrel�sh version allows
function calls that are encountered in speculated functions to create new threads,
i.e., support nested speculation while the previous version we made in the Rhino
engine, does not support this.

We have evaluated the e�ects of Thread-Level Speculation by evaluating the
execution time in the Rhino and in the Squirrel�sh JavaScript engines. In Rhino
we have evaluated the benchmarks in the Google V8 benchmarks suite and in
Squirrel�sh, we have selected 15 web applications that are within the top 100
Alexa list, and that represent di�erent uses of web applications. In addition we
have evaluated the success of a return value prediction, where rollbacks occur
during execution, the memory overhead of storing data in case of a rollback and
various metrics related to speculations. All the evaluations are made on a dual
quad-core computer with a Linux operating system.

In research question 6 and research question 7 we have implemented Thread-
Level Speculation for the Just-in-time based JavaScript engine V8, so we can
measure the e�ects of running a large number of web applications, and have
measured the e�ects in terms of improved execution time and power consumption.

Finally, we have measured the power usage of Thread-Level Speculation on a
Sony Xperia X1 phone. We have done this by compiling our test version of the
chromium web browser which can be executed on a Sony Xperia Z1 phone. We
can then measure the e�ects of our use cases' power usage by using a battery
simulator. We can measure the improved execution time on this device in terms
of execution time compared with the sequential execution time. We measure the
power usage, and compare the sequential power usage with the power usage of
Thread-Level Speculation.
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1.6 Contributions

We address research question 1 and research question 2 in paper I and paper
II respectively, and in paper III, paper IV and paper V we address research
question 3 and research question 4. Paper VII, paper VIII and paper IX address
the research questions 5 and 6.

1.6.1 Contributions in Paper I

The main focus in paper I is to develop repetable methods for evaluating the exe-
cution behavior of a set of web applications with a set of JavaScript benchmarks.
There are multiple problems with comparing these two. For instance, JavaScript
benchmarks execute solely within the JavaScript engine, while web applications
have parts of the program �ow (e.g., events) in the web browser. One of the key
problems with the comparison is that unlike benchmarks, web applications do not
have a start and an end state. To make web applications and benchmarks more
comparable, we have created a set of use cases for the web applications (of what
we consider as common behavior). We evaluate how certain language features are
used, and the importance of these execution time wise in web applications and we
evaluate how often the code changes for identical workloads. To extract results
for this paper, we use the pro�ler Firebug and a modi�ed version of Webkit.

The main contributions of this paper are the following; We propose a method-
ology to measure, characterize, and evaluate the JavaScript execution behavior
of interactive social networking web applications such as Facebook, Twitter, and
MySpace. We do this by de�ning a set of use cases that represent typical user
operations for the selected web applications. These use cases are then deter-
ministically executed using a scripted and controlled environment. Second, our
evaluations con�rm the conclusions in several other studies, e.g., [84, 89], that
there are signi�cant di�erences in the execution behavior between real-world web
applications and established benchmarks and third, we identify one unpublished
signi�cant di�erence between web applications and the established benchmarks,
i.e., the use of anonymous functions.

1.6.2 Contributions in Paper II

Paper II extends paper I, previous research has shown that the established bench-
marks suites are not representative for web applications [84, 89]. In paper II
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we perform a bytecode instruction analysis to compare the types of bytecode
instructions that have been executed for the benchmarks and the web applica-
tions. We evaluate the importance of the eval and anonymous functions for web
applications. We compare the e�ects of Just-in-time compilation versus when
Just-in-time compilation is not enabled for benchmarks and web applications.
We extend our evaluations from paper I with a set of use cases, the �rst 100 web
applications in the Alexa list, and the �rst 109 entries of the JS1K JavaScript
competition from 2010, where each entry used HTML5.

The main contributions are; Just-in-time compilation is bene�cial for many
of the benchmarks, but increases the execution time for more than half of the
web applications. We see that arithmetic/logical bytecode instructions are sig-
ni�cantly more common in benchmarks, while prototype related instructions and
branches are more common in web applications. The eval function is much more
commonly used in web applications than in benchmarks. Approximately half of
the benchmarks use anonymous functions, while approximately 75% of the web
applications use anonymous functions.

1.6.3 Contributions in Paper III

Paper III binds together paper I and paper II. Since the workload of benchmarks
is fundamentally di�erent from the workload of web applications, Just-in-time
compilation might not work as good as for the benchmarks. We evaluate the
types of bytecode instructions for the SunSpider benchmarks and evaluate the
improved execution time for the V8 benchmarks.

Our main contributions are; from the executed bytecode instructions, we
found that there will not be a large number of arithmetic instructions and it
will be few jump instructions. This means that focusing on executing large loops
faster might be fruitless for the web applications. We repeat the evaluations of
the V8 benchmarks and see from the performance evaluations that we are able
to decrease the execution time for two of the benchmarks, however for the other
benchmarks the execution time increases.

1.6.4 Contributions in Paper IV

Knowing about the di�erences between benchmarks and web applications, this
paper addresses improvements by using Thread-Level Speculation for the JavaScript
workload found in web applications. We evaluate the location of rollbacks dur-
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ing execution, the amount of memory requirements right before each rollback,
the number of speculations, the maximum number of active threads, the number
of rollbacks, the depth when searching for irrelevant information for deletion at
each rollback, the depth of the speculations, the relative factor of rollbacks and
speculations and the improved execution time.

The main contribution are; the �rst implementation of Thread-Level Specu-
lation in a state-of-the-art JavaScript engine, i.e., Squirrel�sh [108] which is part
of Webkit. Performance evaluation of Thread-Level Speculation for 15 popular
web applications, e.g., Facebook, Gmail, YouTube, and Wikipedia. We continue
with the evaluation of Just-in-time compilation, and show that Just-in-time com-
pilation degrades the execution time of JavaScript in web applications, not only
when we enable Just-in-time compilation for Squirrel�sh, but also for Google's
V8 JavaScript engine. Our results show signi�cant speedups with Thread-Level
Speculation for most of the studied web applications, with up to 8.4 times speedup
in the best case, on eight cores, and include a detailed analysis of the speculation
and rollback behavior as well as the memory overhead.

1.6.5 Contributions in Paper V

When we encounter a JavaScript function suitable for speculation, we try to
speculate on this function. If this function fails (i.e., it is responsible for a mis-
speculation) we mark this function as not suitable for future speculations, which
means that we do not speculate on this function in the future.

In this paper, we challenge this idea, by allowing ourselves to respeculate
on functions that we already speculated on and that caused a misspeculation.
We try two well known heuristics (albeit not in Thread-Level Speculation, but
rather in another context) for JavaScript in web applications; the 2 bit heuristic
and the exponential heuristic. Out of these, we develop a new heuristic, where
we combine the two. We see from the results that we are able to speed up the
execution time of Thread-Level Speculation, and with the combined heuristic,
we are able to lower the relationship between speculations and rollbacks. This
means, that for each speculation with this heuristic, rollbacks become rarer.

Even though one of the contributions proves that we can improve the execu-
tion time with an alternative heuristic, it also shows that the main problem in
Thread-Level Speculation for JavaScript in web applications is not the number
of rollbacks, but the memory overhead of the speculations.
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1.6.6 Contributions in Paper VI

Paper IV and paper V clearly show that the main problem with Thread-Level
Speculation in JavaScript for web applications isn't the cost and the number of
rollbacks, but the memory usage, i.e., we often make 5000 speculations with a
misspeculation rate of less then 3%. However, we do not know when the rollbacks
are going to occur therefore we need to save in case of a rollback.

In this paper we challenge this, and adjust the available memory, the number
of threads and the speculation depth. Our main contribution is that we can ad-
just these parameters to signi�cantly reduce the memory overhead and speed up
the execution time. More speci�cally, we show that for JavaScript in web appli-
cations, it is su�cient with 32�128 MB memory, 16 threads, and a speculation
depth of 4�16. We also see that as we speculate deeper the number of rollbacks
slightly decreases, and we show that this is due to the execution characteristics
of JavaScript in web applications. We also show that we need to use nested
speculation in order to �nd a su�cient number of speculations for Thread-Level
Speculation in JavaScript for web applications.

1.6.7 Contributions in Paper VII

In Paper VI we saw the e�ects of limiting the amount of memory, the number of
threads and the speculation depth. However, the fact that we needed to manually
tune these parameters, made it unpractical for real life use cases.

In this paper we develop an adaptive heuristic to signi�cantly reduce the
memory overhead (90%) and improve the execution time by being more careful
when we store the checkpoint. We also show that we cannot tune after a �xed
value in JavaScript because of the execution characteristics of JavaScript, i.e.,
there is going to be a signi�cant number of function calls and the number of
function calls are going to vary during execution.

1.6.8 Contributions in Paper VIII

Just-in-time compilation is a technique to speed up the execution time, by com-
piling interpretive code into native code, and thereby (hopefully) decrease the
overhead of the execution.
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The main contribution in this paper is that we show that Thread-Level Spec-
ulation and Just-in-time compilation are two complementary techniques, and in
this paper we show that due to the execution characteristics of JavaScript in web
applications, the two techniques can be successfully combined. We also show
that there are features in the V8 JavaScript engine that could be suitable for
Thread-Level Speculation.

We also show that Thread-Level Speculation can be used on a larger number
of web application, HTML5 as well as on a number of Google map use cases to
improve the performance.

1.6.9 Contributions in Paper IX

In this paper, we repeat the measurements from the previous experiments, only
that this time we make the measurements on a quadcore smartphone, and in
addition to measuring the execution time, we also measure the power usage while
running the same use cases.

The contributions in this paper, are the following; we show that Thread-
Level Speculation can be used to improve the performance of embedded multicore
devices. The maximum power usage by using Thread-Level Speculation on these
devices can be expensive compared to sequential execution. However, the integral
of the power usage is often smaller when we use Thread-Level Speculation than
when we execute it sequentially. This indicates that we can use Thread-Level
Speculation to both increase the performance of the execution time, as well as
reducing the power usage on embedded devices.

1.7 Validity of results

We discuss the threats to the validity of studies, more speci�cally how generaliz-
able our results are; How clear is it that the e�ects of our studies come from our
modi�cations?

1.7.1 Generalizability

Generalizability refers to the possibility of generalizing the study results in a
setting outside of the study [90]. In paper I and paper II, much of our critique
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against current evaluations is that benchmarks are not representative for web
applications. This can be seen by the size of the problems of the benchmarks,
the large di�erences in executed bytecode instructions, the e�ects of Just-in-time
compilation, and the importance of JavaScript language functionalities.

We found that there are di�erences between benchmarks and web applica-
tions. For instance, many web browsers have security mechanisms which prevent
large loops. This conforms to the benchmarks being small instances of problem
sizes, web applications are virtually without loop related bytecode instructions,
a large number of functions and the missing e�ect of for instance Just-in-time
compilation. This suggests that we can in general say that there will be no large
loops in the JavaScript code. Since the loop construct is an important factor
in many of the benchmarks, we can generalize and say that the benchmarks are
unrepresentative.

Even though we know that the benchmarks are unrepresentative, we do not
know which parts of the web applications that are representative. The �rst page
without any user input might happen all the time, but it tells us very little about
the common workload. We have tried to create use cases that illustrate the
behavior of users in web applications; however the use cases are based on a small
number of users.

In paper III, paper IV and paper V we see the e�ects of Thread-Level Specula-
tion for benchmarks and web applications. We see that the e�ects are limited for
the benchmarks and promising for the web applications. From previous sections
there is a risk that benchmarks are unrepresentative for the JavaScript workload
of web applications; We can however generalize the following; Events in web ap-
plications are asynchronous and independent, the number of anonymous function
calls are bound to be quite large, since this is a key component to events and the
eval function is a key component in web applications.

One important e�ect of paper I and paper II, is that since the benchmarks
are unrepresentative for JavaScript execution in web applications then paper V
shows that the popular optimization techniques, Just-in-time compilation slows
down the execution time compared to not using Just-in time compilation. We
have shown that this is not only the case for the Squirrel�sh JavaScript engine,
but also for Google's V8 JavaScript engine as well.

Paper VI shows that the main problem with Thread-Level Speculation in
JavaScript isn't the number of rollbacks or the e�ects of rollbacks, but rather the
memory usage. Paper VII shows that we can get away with much less memory,
less threads and less speculation depth, however this paper also shows that we
need to use nested speculation for Thread-Level Speculation in order improve the
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execution time in Thread-Level Speculation for JavaScript in web applications.
Paper VII shows that we can create an adaptive heuristic to automatically tune
the speculation depth, in order to signi�cantly reduce the memory overhead and
improve the execution time. Finally paper VIII and paper XI show that, even
though the technique Just-in-time compilation in its current form often increases
the execution time of JavaScript in web applications, it is a complementary tech-
nique to Thread-Level Speculation, and due to the workload characteristics of
web applications, Thread-Level Speculation and Just-in-time compilation can be
combined to reduce the execution time and the memory usage.

1.7.2 Internal validity

Internal validity refers to how well a study can establish the relationship between
cause and e�ect [90]. We know from our experiments that there are a large
number of function calls. In paper III, paper IV and paper V we evaluate the
e�ects on a set of benchmarks as well as on a set of web applications. In order to
avoid issues with web applications, we were forced to store the executed bytecode
for later re-execution. This did not fully illustrate the dynamics of the web
applications, issues which were described in paper I and paper II.

Using Thread-Level Speculation for web applications results in a low number
of rollbacks, because functions are short lived, and there are a lot of them. This
is shown in Paper IV and in Paper V. The main problem of this is however, that
we do not know when a speculation is going to cause problems, so we need to
save all the checkpoints. Paper IV and Paper V show that the main problem
is the memory overhead, and that we need to use nested speculation. Paper
VII, shows how we can adaptively tune the checkpoint saves with the checkpoint
depth. Paper VIII, shows that due to the �ndings in paper I and paper III, Just-
in-time compilation and Thread-Level Speculation can be successfully combined
to improve the execution time and reduce the memory usage of JavaScript in web
applications.

1.7.3 Constructive validity

Constructive validity refers to how well the results match against other scienti�c
results or how representative they are for real life results. In paper II and in
paper IV we �rst show that the o�cial benchmarks are unrepresentative and in
paper V we show the consequence of this which is in line with [12, 84, 89]. We
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also select a set of applications used by a large number of people (i.e., from the
Alexia list)

However, real life web applications have many function calls, and we show in
paper V that these can be taken advantage of with Thread-Level Speculation. To
perform the experiments, we use a strict methodology, and make measurements
on very popular web applications.

1.7.4 Conclusion validity

Conclusion validity refers to how certain we are that the cause and the results
are correct [18]. One obvious threat in this study is that there initially in paper
V is a small number of use cases, and that we tested it on one system. However,
we can address these threats the following way; we selected web applications that
are very popular, therefore we expect that these web applications have certain
features which other less popular web applications use as well. Secondly, in
paper VIII and paper IX we increase the number of use cases over the same
benchmarks, and add two new classes of web application to our study, and we
perform the experiments with a di�erent JavaScript engine. Still the results show
that Thread-Level Speculation improves the execution time with more use cases
of the selected web application, and also on a larger set of web applications.
From this we can conclude that these results are valid for a larger number of web
applications.

1.8 Conclusion

To answer research question 1 we minimize the user interaction and make the ex-
ecution of use cases automated to make them more reproducible and repeatable.
For research question 2 we have collected data that show that the workloads of
web applications are not well represented by the benchmarks. This has several
important e�ects, for instance that current techniques for improving the execu-
tion speed, might fail for web applications. Another interesting result of these
di�erences is that special features in JavaScript like anonymous functions and
eval functions are commonly used in web applications.

To answer research question 3 and 4 we have implemented Thread-Level Spec-
ulation on two JavaScript engines, Rhino and Squirrel�sh. We were able to
execute the JavaScript in our web applications over 8 times faster with our im-
plementation compared to the sequential version for 15 web applications. While
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the number of speculations is high, the number of rollbacks is low. The results
indicate that Thread-Level Speculation is a promising technique for web applica-
tions. For the V8 benchmarks, we were not able to improve the execution time for
most cases. In addition the memory requirements where between 1 MB to 33 MB
for the web applications, to ensure that we were able to restore the application
to a point in time when the execution was correct.

To further answer research question 4 we have developed a heuristic to respec-
ulate functions that have previously been speculated. The results show that while
this improves the execution time, the main problem is the memory overhead.

To answer research question 5, we tuned three important parameters for
Thread-Level Speculation, and we show that we do not need to save every check-
point state and that nested speculation is necessary for Thread-Level Speculation.
We also saw that we could tune the depth of nested speculation with an adaptive
heuristic to signi�cantly reduce memory usage and improve the execution time.

To answer research question 6, we implemented Thread-Level Speculation in
a Just-in-time enabled JavaScript engine. Our results show that Thread-Level
Speculation and Just-in-time compilation are complementary techniques, and
these can be combined. We also show that due to the characteristics of JavaScript
in web applications it is very suitable for Thread-Level Speculation.

To answer research question 7, we further evaluate the power usage by running
the previous measurements, and show that we are able to reduce the power usage
with Thread-Level Speculation.

The results of this thesis clearly show that Thread-Level Speculation is a
viable technique to improve the performance and reduce the power usage of
JavaScript in web applications.

1.9 Future work

We have shown that Thread-Level Speculation increases the JavaScript perfor-
mance in web applications on a wide range of devices with multiple cores (from
large server systems to embedded devices). However, there are more things to
investingate.

How well does Thread-Level Speculation work with other managed languages?
Web applications are for instance suitable for Thread-Level Speculation, however
is Thread-Level Speculation suitable for other languages highly relevant to web
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development, such as Dart? The Dart language can be compiled to JavaScript
code. How well does the compiled JavaScript code work with Thread-Level Spec-
ulation? There are other managed languages where Thread-Level Speculation
could be evaluated, such as Mono (the open source variant of C#).

We also saw that there has previously been attempts to use Thread-Level
Speculation with Java (e.g., in Jrmp and SableVM, which do not support nested
speculation). Could we further investigate the e�ect of Thread-Level Speculation
on other features in these langauges, and extend their implementations to sup-
port Just-in-time compilation and nested speculation? Due to the importance
of JIT in Java, would an extension of their implementations further improve the
performance?

In the last paper, we show that one can reduce the power usage in web ap-
plication, and at the same time improve the execution time. Could we instead
of speculating to improve the performance, speculate to reduce the power usage?
Can we for instance identify parts of web applications that are power hungry?
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Chapter 2
Paper I

AMethodology for Evaluating JavaScript Execution Behavior
in Interactive Web Applications

Jan Kasper Martinsen and Håkan Grahn

Proceedings of the Ninth ACS/IEEE International Conference on Computer
Systems And Applications (AICCSA 2011), pages 241-248, December 2011,
Sharm El-Sheikh, Egypt

2.1 Introduction

JavaScript was introduced primary as an interpreted prototype based scripting
language for web pages, which allowed programmers to add interactivity to web
pages [24, 37]. With JavaScript these web pages where given application like
behavior. As a results, a larger number of more or less sophisticated ports of
typical desktop-like applications became accessible as web pages. One typical
example is Google's mail client gmail [93]. These web pages are informally known
as web applications [110].

One important advantage of web applications is the ease of application distri-
bution. Installing a conventional application usually requires that you are careful
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so it gets installed onto a correct operating system and on a machine with cer-
tain speci�cations. In contrast, web applications can essentially be accessed and
executed directly from any (reasonably modern) web browser.

Social networking [6] has become a popular type of web applications. Face-
book seems to be the most popular one and is number two on the Alexa list of the
most popular web sites [4, 77]. Many of the entries among top 25 web sites are so-
cial networks, e.g., Facebook [74], Twitter [43], and MySpace [79]. Several studies
have con�rmed the popularity of social networking web applications [21, 22, 69].

Due to the popularity and ease of distribution of web applications, JavaScript
has become a very popular programming language. There have also been several
approaches to improve the performance of the JavaScript interpreter [26, 27, 87].

To measure and evaluate the performance of JavaScript interpreters (and
thereby measuring and quantifying the results of the interpreter optimization), a
set of benchmark suites have been proposed [29, 71, 107]. Some of the critique [84,
89] against these suites, is that several of the benchmarks have been ported from
benchmarks in, e.g., operating systems and numerical research. While these
might help us to improve certain aspects of the interpreter, there is a signi�cant
risk that the execution behavior of these benchmarks might not fully re�ect the
JavaScript behavior of actual web applications, such as social networking web
applications.

In this paper, we make three main contributions:

• First, we propose a methodology to measure, characterize, and evaluate the
JavaScript execution behavior of interactive social networking web applica-
tions such as Facebook, Twitter, and MySpace. We do this by de�ning a
set of use cases that represent typical user operations for the selected web
applications. These use cases are then deterministically executed using a
scripted and controlled environment.

• Second, our measurements con�rm the conclusions from several other stud-
ies, e.g., [84, 89], that there are signi�cant di�erences in the execution
behavior between real-world web applications and established benchmarks.

• Third, we identify one unpublished signi�cant di�erence between web ap-
plications and the established benchmarks, i.e., the use of anonymous func-
tions.

The rest of the paper is organized as follows. Section 2.2 presents some
background and previous work, and then Section 2.3 presents the benchmarks
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and web applications that we use. In Section 2.4, we present our methodology to
do workload characterization of interactive web applications. Section 2.5 presents
our measurement results. Section 2.6 discusses some directions for future work,
and �nally, we conclude our �ndings in Section 2.7.

2.2 Background

2.2.1 JavaScript and web applications

JavaScript [24, 37] was introduced by Netscape in 1995 as a way to allow web
developers to add dynamic functionality to web pages that were executed on the
client side. The purposes of the functionality were typically to validate input
forms and other user interface related tasks. JavaScript has gained momentum
over the years, particularly due to its ease of deployment and the increasing pop-
ularity of certain web applications, e.g., Gmail [94]. We have found that almost
all of the �rst 100 sites in the Alexa-top sites list [4] include some JavaScript
functionality.

JavaScript is a dynamically typed, object-based scripting language with run-
time evaluation. The execution of a JavaScript program is done in a JavaScript
engine [30, 72, 108], i.e., an interpreter/virtual machine that parses and exe-
cutes the JavaScript program. Due to the popularity of the language, there have
been multiple approaches to increase the performance of the JavaScript engines,
through well-known optimization techniques such as just-in-time (JIT) compila-
tion techniques, fast property access, and e�cient garbage collection [27, 30].

2.2.2 Previous work

With the increasing popularity of web applications, it has been suggested that
the web browser could serve as a general platform for applications in the future.
This would imply that JavaScript needs increased performance. Further, it also
mean that one would need to look deeper into the workload of actual web ap-
plications. This process is in its early phases, but there are several examples
of interesting work [74, 5]. Two concurrent studies [84, 89] explicitly compare
the JavaScript execution behavior of web applications as compared to existing
JavaScript benchmark suites.
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The study by Ratanaworabhan et al. [84] is one of the �rst studies that com-
pares JavaScript benchmarks with real-world web applications. They instru-
mented the Internet Explorer 8 JavaScript runtime in order to get their measure-
ments. Their measurements were focused on two areas of the JavaScript execution
behavior, i.e., (i) functions and code, and (ii) events and handlers. Based on the
results, they conclude that existing JavaScript benchmarks are not representative
of many real-world web applications and that conclusions from benchmark mea-
surements can be misleading. Examples of important di�erences include di�erent
code sizes, web applications are often event-driven, no clear hotspot function in
the web applications, and that many functions are short-lived in web applications.
They also studied memory allocation and object lifetimes in their study.

The study by Richards et al. [89] also compares the execution behavior of
JavaScript benchmarks with real-world web applications. In their study, they
focus on the dynamic behavior and how di�erent dynamic features are used.
Examples of dynamic features evaluated are prototype hierarchy, program size,
object properties, and hot loop (hotspots). They conclude that the behavior of
existing JavaScript benchmarks di�er on several of these issues from the behavior
of real web applications.

2.3 Benchmarks and web applications

2.3.1 JavaScript benchmarks

There exist three established JavaScript benchmark suites: V8 [29], Dromaeo [71],
and Sunspider [107]. The applications in these benchmark suites generally fall
into two di�erent categories: (i) testing of a speci�c functionality, e.g., string
manipulation or bit operations, and (ii) ports of already existing benchmarks
that are used extensively for other programming environments [2].

For example, the benchmarks Raytrace, Richards, Deltablue, and Earley-
Boyer are included in the V8 benchmark suite. Raytrace is a well-known com-
putational intensive graphical algorithm for rendering scenes [105]. Richards
simulates an operating system task dispatcher, Deltablue is a constraint solver,
and Earley-Boyer is a type theorem prover benchmark. In contrast, the Dromaeo
benchmarks test speci�c JavaScript language features.

Typical for the established benchmarks is that they often are problem ori-
ented, meaning that the purpose of the benchmark is to accept a problem input,
solve this certain problem, and then end the computation. This eases measure-
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Table 2.1: A summary of the benchmark suites used in this paper.

Benchmark suite Applications

Dromaeo 3d-cube, core-eval, object-array, object-regexp,
object-string, string-base64

V8 crypto, deltablue, earley-boyer, raytrace, richards
SunSpider 3d-morph, 3d-raytrace

access-binary-trees, access-fannkuch, access-nbody,
access-nsieve
bitops-3bit-bits-in-byte, bitops-bits-in-byte, bitops-
bitwise-and, bitops-nsieve-bits
control�ow-recursive crypto-aes, crypto-md5, crypto-
sha1
date-format-tofte, date-format-xparb
math-cordic, math-partial-sums, math-spectral-norm
regexp-dna
string-fasta, string-tagcloud, string-unpack-code,
string-validate-input

ments, gives the developer full control over the benchmarks, and increases the
reproducibility.

2.3.2 Social networking web applications

There exists many so-called social networking web applications [109], where Face-
book [74] is the most popular one [4, 22]. There are even examples of countries
where half of the population use Facebook to some extent during the week [21].
The purpose and usage of social web applications might have many facets. How-
ever, the key element for a social networking application to be successful is to
have a certain critical mass of users.

The users of a social networking web application can locate and keep track
of friends or people that share the same interests. This set of friends represents
each user's private network, and to maintain and expand a user's network, a set
of functionalities is de�ned. For example, users can create petitions to vote for
a certain cause, while other users can play video games where the �nal 'score' is
compared with other friends in their own networks.
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In this paper we study the social networking web applications Facebook, Twit-
ter [43], and MySpace [79]. In a sense, Facebook seems to be a general purpose
social networking web application, with a wide range of di�erent functionality.
Further, Facebook also has the largest number of users.

Twitter is for writing small messages, so called "tweets", which are restricted
to 160 characters (giving a clear association to SMS). The users of Twitter are
able to follow other people's tweets, and for instance add comments in form of
tweets to their posts.

MySpace seems to be especially coined at musicians, that wish to share or
obtain music. Through MySpace the users can upload music, which they in turn
distribute to other MySpace users. Users are also able to write comments and
search for other users with similar music taste.

2.4 A methodology for evaluating JavaScript ex-

ecution behavior

While the benchmarks have a clear purpose, with a clearly de�ned start and end
state, interactive social networking web applications behave more like operating
system applications, where the user can perform a selected number of tasks. As
long as the web application is viewed by the user, it remains active and performs
a set of underlying tasks.

When measuring and evaluating application or system behavior, as well as
when de�ning benchmarks, two of the most important things are: (i) the appli-
cation/benchmark should be representative and (ii) the measurements should be
reproducible. How representative existing JavaScripts benchmark suites are for
real-world web applications have been addressed in, e.g., [84, 89], and in this pa-
per we identify some additional di�erences. However, the issue of reproducibility
of web application behavior measurements have not been addressed in previous
studies.

2.4.1 Representative behavior

In order to mimic a representative use and behavior of social network web appli-
cations, we have de�ned a set of use cases. Each use case has a clear start and
end state. These use cases are intended to give a realistic idea of the actual work-
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load in web applications and also provide repeatability of the measurements. The
use cases that we have designed represent common user behavior in Facebook,
Twitter, and Myspace, rather than exhausting JavaScript execution.

Figure 2.1, Figure 2.2 and Figure 2.3 show the di�erent use cases that we
have de�ned for Facebook, Twitter, and MySpace, respectively. All use cases
start with the user login. Then, the user has multiple options.

For Facebook, the users login to the system, then the user searches for an
old friend, which the user in turn �nds. When the user �nds this old friend,
the user marks him as a "friend", an operation where the user needs to ask for
con�rmation from the friend to make sure that he actually is the same person.
This operation is a typical example of an use case, which in turn is composed of
several sub use cases: 0 -login/home, 0.3 -find friend, 0.3.1 -add friend,
and 0.3.1.0 -send request, as shown in Figure 2.1.

All use cases start with the login case, and we recognize an individual op-
eration, such as 0.3.1 -add friend as a sub use case, though it must complete
previous use cases. Further, we do allow use cases that goes back and forth be-
tween use cases. For example in Figure 2.2, if we want to both choose the option
0.1.0 -follow and 0.1.1 -mention, then we would need to visit the following
sub use cases: 0 -login/home, 0.1 -find person, 0.1.0 -follow, 0.1 -find

person, and 0.1.1 -mention.

Figure 2.1: Use cases to characterize the JavaScript workload of Facebook.
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Figure 2.2: Use cases to characterize the JavaScript workload of Twitter.

Figure 2.3: Use cases to characterize the JavaScript workload of MySpace.

2.4.2 Reproducible behavior

To enhance reproducibility, we use the AutoIt scripting environment [11] to auto-
matically execute the various use cases in a controlled fashion. As a result, we can
make sure that we spend the same amount of time on the same or similar opera-
tions, such as to type in a password or click on certain buttons. This is suitable
for the selected use cases. However for certain operations, several social networks
employ various web crawling countermeasures, e.g., through CAPTCHA [28] or
restricts the number of login attempts.

32



We discovered by successively executing the same use case (the 0 -login/home

Facebook use case) 10 times, that there is no guarantee that the executed JavaScript
code would be identical in all the cases, even though the usage would be identi-
cal. Since JavaScript has a function such as eval, we can easily create script that
dynamically generates JavaScript code. We have found that a certain fraction
of the function names is unique for repetitions of identical cases, which suggests
that changes occur between reloads or as a result of session speci�c code through
AJAX calls. We also found that the number of function calls, and the number of
functions that are called vary for identical cases as shown in Figure 2.4.

Figure 2.4: Total number of functions for each of the 10 repetitions of the same
case.

A large fraction of these function calls is anonymous function calls (we will
come back this issue in Section 2.5.2). Thus, we could argue that many of them
were dependent on the input data, which could potentially change through AJAX
calls [19]. However, at the same time, not all of them are anonymous calls for all
of the 10 successive calls with functions that had unique function names.

To remedy this problem and simplify later analysis, we have done the fol-
lowing. For example, the two cases in Figure 2.3 (0 -login/home, 0.1 -find
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person, 0.1.1 -message) and (0 -login/home, 0.1 -find person, 0.1.1 -add)
both share the same actions (0 -login/home, 0.1 -find person), which we from
now on denote as a sub case. However, as we saw above, the JavaScript execution
for this sub use case might be radically di�erent for the two cases. To simplify
later analysis we have created two countermeasures, to make sure that the exe-
cuted JavaScript code will be less di�erent between the two cases.

By using the WebKit [99] tool, we have extracted and created a local copy
of certain sub use cases. In more detail, when these parts are extracted, we �rst
login to, e.g., Facebook, where there seems to be some so-called session variables
that needs to be set. Then we open up the local copy, and pro�le this until
we reach the point where we can select two di�erent paths (e.g., 0.1.0 -add

or 0.1.1 -message). We have found that this approach seems to work fairly
well for some of the cases, but not for all of them. If this �rst approach does
not work, we have used the following mechanism. We have instrumented and
repeatedly executed the common use cases 10 times (e.g., 0 -login/home, 0.1
-find person) and then used the average of the common JavaScript execution
pro�le for the measurements.

2.4.3 Experimental environment

To do the actual pro�ling we have used the Firebug v1.5.4 pro�ling tool running
on a freshly installed Windows XP. Firebug runs on a custom compiled version of
Firefox v3.6, which is able to automatically record executed JavaScript code as
well as some simple instrumentation. Firebug reports a number of issues, and for
JavaScript code it reports, e.g., the name of the JavaScript functions called, the
amount of time each function is executed, the percentage of the total execution
time the function uses, and the amount of time the function uses for execution.
To extract use cases we have used a custom Ubuntu installation with WebKit.

2.5 Measurement results

2.5.1 Distribution of function calls and execution time

In order to understand the relative impact on the execution time of each function
call, we have collected execution statistics of how many times each function is
called and how much it contributes to the total execution time.
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We have normalized the execution time for all the function call entries. To
understand how these relates to functions that accounts for most of the appli-
cations execution time, we created a histogram for the execution time for both
the benchmarks and the �rst 100 sites on the Alexa top sites list (Figure 2.5
and Figure 2.6). This histogram is divided into 10 categories, where each cate-
gory accounts for the number of function calls that contributes to either 0− 9%,
10−19%, 20−29%, 30−39%, 40−49%, 50−59%, 60−69%, 70−79%, 80−89%,
or 90− 99% of the execution time.

Figure 2.5: Histogram over the number of functions that contributes to a certain
percentage of the total execution time for the benchmarks.

We see in Figure 2.5 and Figure 2.6 that both the benchmarks and the Web
Applications have a large number of functions in the 0 − 9% category, which
indicate that there is a very large number of small functions executed. In Fig-
ure 2.5 we see that for the benchmarks, the workload is divided into most of
the columns in the histogram. Especially, we �nd that there are a number of
functions that account for more than 80% of the execution time, i.e., a clear hot
spot function exists. In contrast, we see in Figure 2.6 that the execution time
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Figure 2.6: Histogram over the number of functions that contributes to a certain
percentage of the total execution time for the Web Applications.

of the Web Applications only uses the �rst four categories. This means that no
function dominates the execution time in the web applications, i.e., no hot spot
exists in the code. In web applications, the workload seems to be more evently
distributed, and no JavaScript function contributes to more than at most 39%
of the total execution time.

In order to analyze the relative execution time for social network web ap-
plications, we show the relative fraction of execution time per function and the
relative number of function calls per function for Facebook, Twitter, and MySpace
in Figure 2.7, Figure 2.8, and Figure 2.9, respectively.

Our results show a high variance between the number of times a function
is called and its contribution to the execution time for Facebook, Twitter, and
MySpace. This indicates that there is a high variance in the execution times of
individual functions. For example, we found that for the Facebook use case, only
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Figure 2.7: Relative number of function calls and the relative amount of execution
time spent in each function for the Facebook use cases.

14 out of 75 function calls have the same relative number of function calls as the
relative fraction of the execution time.

2.5.2 Anonymous function behavior

A previous study of Facebook reveals that a large number of anonymous func-
tion calls are made [54]. However, the same study reveals that these functions
do not account for a large fraction of the total execution time. In Figure 2.10,
Figure 2.11, and Figure 2.12, respectively, we have measured (i) the number of
unique anonymous functions relative to the total number of unique functions,
(ii) the total number of anonymous function calls relative to the total number
of function calls, and (iii) the total execution time spent in anonymous func-
tions relative to the total execution time for the use cases de�ned in Figure 2.1,
Figure 2.2 and Figure 2.3.
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Figure 2.8: Relative number of function calls and the relative amount of execution
time spent on each function for the Twitter use cases.

We see in Figure 2.10 that the number of unique anonymous function calls as
well as the number of calls increase slightly as we complete the use case (25% and
31%). However, the execution time increases with a factor 5 between the login
sub use case and the �nal use case. At the �nal sub use case, the anonymous
function workload amounts to over half of the total workload.

However, from Figure 2.11 and Figure 2.12 we see that both Twitter and
MySpace use fewer anonymous function calls than Facebook does. They have only
a small number of unique anonymous functions, a small number of anonymous
function calls and those functions that are called does only account for a minor
part of the execution time.

In comparison, our results show that anonymous functions are used to a very
little degree in the benchmarks. For instance, both the V8 benchmarks Raytracer
and Earley-Boyer had both over 40000 function calls, but only 3 of them were
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Figure 2.9: Relative number of function calls and the relative amount of execution
time spent in each function for the MySpace use cases.

anonymous functions. In comparison, in Figure 2.10, for the use case where we
search for friends, over 40% of the function calls were anonymous.

2.6 Discussion and future work

As pointed out in [84, 89] one could argue that the workload of JavaScript in a
web application setting is not well represented by the established benchmarks.
These studies and our own results suggest that the behavior of web applications
is signi�cantly di�erent than for traditional programs, e.g., by being more event-
driven and by utilizing dynamic updates of code at runtime. The lack of iterative
constructs also could suggest that traditional JIT like optimization could be less
e�ective for web applications than for the established benchmarks. This is some-
thing that will be examined in the future.
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Figure 2.10: Anonymous function calls for Facebook.

However, we still need to be careful with our conclusions, and we will outline
a couple of reasons why such a care is needed. Web applications is a fairly new
concept that came together with the popularization of a set techniques known as
Web2.0 and the possibility for dynamic updates. Our tests reveal the importance
of such technologies in, e.g., Facebook. However, at the same time, there is a
trend where richer multimedia possibilities are starting to be o�ered to the web
through technologies such as for instance WebGL. For some of the workloads
found in multimedia applications utilizing for instance 3D graphics, some of the
current benchmarks would be more relevant.

Our study as well as other similar studies [84] are based on web applications.
However, JavaScript has turned out to be a popular embedded language for
multiple applications, e.g., an embedded language in the FireFox web browser,
so its usage is in no way restricted to only web applications. Further, some of
the workloads in web applications are spawned from functionalities that is not
strictly part of the JavaScript speci�cation, but rather part of the functionalities
of the web browser.

Either way, JavaScript has some rather unique programming constructs, and
as our test shows, a functionality such as anonymous functions are used exten-
sively. These kind of functions are spawned from a di�erent �eld, and are usually
not available in other programming languages. That does, however, not mean
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Figure 2.11: Anonymous function calls for Twitter

that they are not powerful. The established benchmarks address this issue only
to a minor extent, and future benchmarks ought to take the usage of anonymous
functions into account. We also suggest that there should be put some e�ort into
simulating event-driven programs.

2.7 Concluding remarks

In this paper we have described a methodology to characterize the workload
behavior of interactive web applications that are written in JavaScript. As part
of the methodology, we have de�ned a number of use cases for three popular
social networking applications, i.e., Facebook, Twitter, and MySpace. Further,
we use an automatic scripting environment in order to enhance the repeatability
of the measurements.

Our characterization of the workload behavior of social networking web appli-
cations shows some interesting di�erences as compared to the workload behavior
of established JavaScript benchmarks. First, we have found that the correlation
between the relative number of function calls and the relative amount of execu-
tion time spent in each function is signi�cantly lower for web applications than for
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Figure 2.12: Anonymous function calls for MySpace

the benchmarks. Second, the studied web applications have a signi�cantly larger
amount of anonymous functions and function calls than the established bench-
marks. Finally, the established benchmarks often contain loop constructs that
account for a signi�cant portion of the total execution time, while such hot spots
have not been observed in the web applications. In contrast, web applications
seem to be based on event-driven programming techniques.
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Chapter 3
Paper II

Evaluating Four Aspects of JavaScript Execution Behavior
in Benchmarks and Web Applications

Jan Kasper Martinsen, Håkan Grahn and Anders Isberg

Research Report, Number : 2011:03, ISSN : 1103-1581, Blekinge Institute of
Technology, July 2011, Blekinge, Sweden

3.1 Introduction

The World Wide Web has become an important platform for many applications
and application domains, e.g., social networking and electronic commerce. These
type of applications are often referred to as web applications [106]. Web applica-
tions can be de�ned in di�erent ways, e.g., as an application that is accessed over
the network from a web browser, as a complete application that is solely executed
in a web browser, and of course various combinations thereof. Social network-
ing web applications, such as Facebook [75], Twitter [43], and Blogger [10], have
turned out to be popular, being in the top-25 web sites on the Alexa list [4]

∗A shorter version is published in Proc. of the 11th Int'l Conf. on Web Engineering (ICWE
2011), Lecture Notes in Computer Science No. 6757, pp. 399�402, June 2011.
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of most popular web sites. All these three applications use the interpreted lan-
guage JavaScript [37] extensively for their implementation, and as a mechanism
to improve both the user interface and the interactivity.

JavaScript [37] was introduced in 1995 as a way to introduce dynamic func-
tionality on web pages, that were executed on the client side. JavaScript has
reached widespread use through its ease of deployment and the popularity of cer-
tain web applications [94]. We have found that nearly all of the �rst 100 entries
in the Alexa top sites list use JavaScript.

JavaScript [37] is a dynamically typed, object-based scripting language with
run-time evaluation. The execution of a JavaScript program is done in a JavaScript
engine [30, 108, 72], i.e., an interpreter/virtual machine that parses and executes
the JavaScript program. The popularity of JavaScript increases the importance
of its run-time performance, and di�erent browser vendors constantly try to out-
perform each other.

In order to evaluate the performance of JavaScript engines, several benchmark
suites have been proposed, e.g., Dromaeo [71], V8 [29], SunSpider [107], and
JSBenchmark [39]. However, two previous studies indicate that the execution
behavior of existing benchmarks di�ers in several important aspects [84, 89].

In this study, we compare the execution behavior of four di�erent application
classes, i.e., (i) four established JavaScript benchmark suites, (ii) the start pages
for the �rst 100 sites on the Alexa top list [4], (iii) 22 di�erent use cases for
Facebook [75], Twitter [43], and Blogger [10] (sometimes referred to as BlogSpot),
and �nally, (iv) 109 demo applications for the emerging HTML5 standard [32].
Our measurements are performed with WebKit [108], one of the most commonly
used browser environments in mobile terminals.

We extend previous studies [84, 89] with several important contributions:

• First, we extend the execution behavior analysis with two new applica-
tion classes, i.e., reproducible use cases of social network applications and
HTML5 applications.

• Second, we identify the importance of anonymous functions. We have found
that anonymous functions are used more frequently in real-world web ap-
plications than in the existing JavaScript benchmark suites.

• Third, our results clearly show that just-in-time compilation often decreases
the performance of real-world web applications, while it increases the per-
formance for most of the benchmark applications.
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• Fourth, a more thorough and detailed analysis of the use of the eval func-
tion.

• Fifth, we provide a detailed bytecode instruction mix measurement, evalu-
ation, and analysis.

The rest of the paper is organized as follows; In Section 3.2 we introduce
JavaScript and JavaScript engines along with the most important related work.
Section 3.3 presents our experimental methodology, while Section 3.4 presents
the di�erent application classes that we evaluate. Our experimental results are
presented in Section 3.5. Finally, we conclude our �ndings in Section 3.6.

3.2 Background and related work

3.2.1 JavaScript

An important trend in application development is that more and more applica-
tions are moved to the World Wide Web [103]. There are several reasons for
this, e.g., accessibility and mobility. These applications are commonly known as
web applications [106]. Popular examples of such applications are: Webmails,
online retail sales, online auctions, wikis, and many other applications. In order
to develop web applications, new programming languages and techniques have
emerged. One such language is JavaScript [24, 37], which has been used espe-
cially in client-side applications, i.e., in web browsers, but are also applicable in
the server-side applications. An example of server-side JavaScript is node.js [76],
where a scalable web server is written in JavaScript.

JavaScript [24, 37] was introduced by Netscape in 1995 as a way to allow
web developers to add dynamic functionality to web pages that were executed
on the client side. The purposes of the functionality were typically to validate
input forms and other user interface related tasks. JavaScript has since then
gained momentum, through its ease of deployment and the increasing popularity
of certain web applications [94]. We have found that nearly all of the �rst 100
entries in the Alexa top sites list use some sort of JavaScript functionality.

JavaScript is a dynamically typed, prototype, object-based scripting language
with run-time evaluation. The execution of a JavaScript program is done in a
JavaScript engine [30, 72, 108], i.e., an interpreter/virtual machine that parses
and executes the JavaScript program. Due to the popularity of the language,
there have been multiple approaches to increase the performance of the JavaScript
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engines, through well-known optimization techniques such as JIT related tech-
niques, fast property access, and e�cient garbage collections [27, 30].

The execution of JavaScript code is often invoked in web application through
events. Events are JavaScript functionalities that are executed at certain oc-
casions, e.g., when a web application has completed loading all of its elements,
when a user clicks on a button, or events that executes JavaScript at certain
regular time intervals. The last type of event is often used for so-called AJAX
technologies [3]. Such AJAX requests often transmit JavaScript code that later
will be executed on the client side, and can be used to automatically update the
web applications.

Another interesting property of JavaScript within web applications, is that
there is no mechanism like hardware interrupts. This means that the web browser
usually �locks� itself while waiting for the JavaScript code to complete its exe-
cution, e.g., a large loop-like structure, which may degrade the user experience.
Partial solutions exist, e.g., in Chrome where each tab is an own process, and a
similar solution exists in WebKit 2.01.

3.2.2 Related work

With the increasing popularity of web applications, their execution behavior as
well as the performance of JavaScript engines have attended an increased focus,
e.g., [75, 5]. Two concurrent studies [84, 89] explicitly compare the JavaScript
execution behavior of web applications as compared to existing JavaScript bench-
mark suites.

The study by Ratanaworabhan et al. [84] is one of the �rst studies that com-
pares JavaScript benchmarks with real-world web applications. They instru-
mented the Internet Explorer 8 JavaScript runtime in order to get their measure-
ments. Their measurements are focused on two areas of the JavaScript execution
behavior, i.e., (i) functions and code, and (ii) events and handlers. They conclude
that existing JavaScript benchmarks are not representative of many real-world
web applications and that conclusions from benchmark measurements might be
misleading. Important di�erences include; di�erent code sizes, web applications
are often event-driven, no clear hotspot function in the web applications, and that
many functions are short-lived in web applications. They also studied memory
allocation and object lifetimes in their study.

1http://www.techradar.com/news/software/webkit-2-0-announced-taking-leaf-from-
chrome-682414
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The study by Richards et al. [89] also compares the execution behavior of
JavaScript benchmarks with real-world web applications. In their study, they
focus on the dynamic behavior and how di�erent dynamic features are used.
Examples of dynamic features evaluated are prototype hierarchy, the use of eval,
program size, object properties, and hot loop. They conclude that the behavior
of existing benchmarks di�ers on several of these issues from the behavior of real
web applications.

3.3 Experimental methodology

The experimental methodology is thoroughly described in [56]. We have selected
a set of 4 application classes consisting of the �rst page of the 100 most popular
web sites, 109 HTML5 demos from the JS1K competition, 22 use cases from
three popular social networks (Facebook, Twitter, and Blogger), and a set of 4
benchmarks for measurements. We have measured and evaluated two aspects:
the execution time with and without just-in-time compilation, and the bytecode
instruction mix for di�erent application classes. The measurements are made on
modi�ed versions of the GTK branch of WebKit (r69918) and Mozilla Firefox
with the FireBug pro�ler.

Web applications are highly dynamic and the JavaScript code might change
from time to time. We improve the reproducibility by modifying the test environ-
ment to download and re-execute the associated JavaScript locally (if possible).
For each test an initial phase is performed 10 times to reduce the chances of
execution of external JavaScript code.

Another challenge is the comparison between the social networking web ap-
plications and the benchmarks, since the web applications have no clear start and
end state. To address this, we de�ned a set of use cases based on the behavior
of friends and colleagues, and from this we created instrumented executions with
the Autoit tool.

We modi�ed our test environment in order to enable or disable just-in-time
compilation. During the measurements, we executed each test case and appli-
cation with just-in-time compilation disabled and enabled 10 times each, and
selected the best one for comparison. We used the following relative execution
time metric to compare the di�erence between just-in-time-compilation (JIT) and
no-just-in-time-compilation (NOJIT):

Texe(JIT )/Texe(NOJIT ) ≥ 1
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3.4 Application classes

An important issue to address when executing JavaScript applications is to obtain
reproducible results, especially since the JavaScript code may change between
reloads of the same url address. We have addressed this by downloading the
JavaScript code locally, and run the code locally. Further, in most cases we
execute the code several times, up to ten times in the just-in-time compilation
comparison in Section 3.5.1, and then take the best execution time for each case.

3.4.1 JavaScript benchmarks

There exist a number of established JavaScript benchmark suites, and in this
study we use the four most known: Dromaeo [71], V8 [29], Sunspider [107], and
JSBenchmark [39]. The applications in these benchmark suites generally fall
into two di�erent categories: (i) testing of a speci�c functionality, e.g., string
manipulation or bit operations, and (ii) ports of already existing benchmarks
that are used extensively for other programming environments [2].

For instance, among the V8 benchmarks are the benchmarks Raytrace, Richards,
Deltablue, and Earley-Boyer. Raytrace is a well-known computational extensive
graphical algorithm that is suitable for rendering scenes with re�ection. The
overall idea is that for each pixel in the resulting image, we cast a ray through
a scene and the ray returns the color of that pixel based on which scene objects
each ray intersects [105].

Richards simulates an operating system task dispatcher, Deltablue is a con-
straint solver, and Earley-Boyer is a classic scheme type theorem prover bench-
mark. However, the Dromaeo benchmarks do test speci�c features of the JavaScript
language and is in this sense more focused on speci�c JavaScript features.

Typical for the established benchmarks is that they often are problem ori-
ented, meaning that the purpose of the benchmark is to accept a problem input,
solve this certain problem, and then end the computation. This eases the mea-
surement and gives the developer full control over the benchmarks, and increases
the repeatability.
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Table 3.1: A summary of the benchmark suites used in this paper.

Benchmark
suite

Applications

Dromaeo [71] 3d-cube, core-eval, object-array, object-regexp, object-string,
string-base64

V8 [29] crypto, deltablue, earley-boyer, raytrace, richards
SunSpider [107] 3d-morph, 3d-raytrace access-binary-trees, access-fannkuch,

access-nbody, access-nsieve
bitops-3bit-bits-in-byte, bitops-bits-in-byte, bitops-bitwise-
and, bitops-nsieve-bits
control�ow-recursive crypto-aes, crypto-md5, crypto-sha1
date-format-tofte, date-format-xparb
math-cordic, math-partial-sums, math-spectral-norm regexp-
dna
string-fasta, string-tagcloud, string-unpack-code, string-
validate-input

JSBenchmark
[39]

Quicksort, Factorials, Conway, Ribosome, MD5, Primes, Ge-
netic Salesman, Arrays, Dates, Exceptions

3.4.2 Web applications - Alexa top 100

The critical issue in this type of study is which web applications that can be con-
sidered as representative. Due to the distributed nature of the Internet, knowing
which web applications are popular is di�cult. Alexa [4] o�ers software that can
be installed in the users' web browser. This software records which web applica-
tions are visited and reports this back to a global database. From this database,
a list over the most visited web pages can be extracted. In Table 3.2 we present
the 100 most visited sites from the Alexa list. In our comparative evaluation, we
have used the start page for each of these 100 most visited sites as representatives
for popular web applications.

In addition to evaluating the JavaScript performance and execution behavior
of the �rst page on the Alexa top-list, we have created use cases where we measure
the JavaScript performance of a set of social networking web applications. These
use cases are described in the next section.
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Table 3.2: A summary of the 100 most visited sites in the Alexa top-sites list [4]
used in this paper (listed alfabetically).

163.com 1e100.net 4shared.com about.com adobe.com
amazon.com ameblo.jp aol.com apple.com ask.com
baidu.com bbc.co.uk bing.com blogger.com bp.blogspot.com
cnet.com cnn.com conduit.com craigslist.org dailymotion.com
deviantart.com digg.com doubleclick.com ebay.com ebay.de
espn.go.com facebook.com fc2.com �les.wordpress.com �ickr.com
globo.com go.com google.ca google.cn google.co.id
google.co.in google.co.jp google.co.uk google.com google.com.au
google.com.br google.com.mx google.com.tr google.de google.es
google.fr google.it google.pl google.ru hi5.com
hot�le.com imageshack.us imdb.com kaixin001.com linkedin.com
live.co livedoor.com livejasmin.com livejournal.com mail.ru
media�re.com megaupload.com megavideo.com microsoft.com mixi.jp
mozilla.com msn.com myspace.com nytimes.com odnoklassniki.ru
orkut.co.in orkut.com orkut.com.br photobucket.com pornhub.com
qq.com rakuten.co.jp rapidshare.com redtube.com renren.com
sina.com.cn sohu.com soso.com taobao.com tianya.cn
tube8.com tudou.com twitter.com uol.com.br vkontakte.ru
wikipedia.org wordpress.com xhamster.com xvideos.com yahoo.co.jp
yahoo.com yandex.ru youku.com youporn.com youtube.com

3.4.3 Web applications - Social network use cases

There exists many so-called social networking web applications [109], where Face-
book [75] is the most popular one [4, 22]. There are even examples of countries
where half of the population use Facebook to some extent during the week [21].
The users of a social networking web application can locate and keep track of
friends or people that share the same interests. This set of friends represents
each user's private network, and to maintain and expand a user's network, a set
of functionalities is de�ned.

In this paper we study the social networking web applications Facebook [75],
Twitter [43], and Blogger [10]. In a sense, Facebook is a general purpose so-
cial networking web application, with a wide range of di�erent functionalities.
Further, Facebook also seems to have the largest number of users.
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Twitter [43] is for writing small messages, so called "tweets", which are re-
stricted to 160 characters (giving a clear association to SMS). The users of Twitter
are able to follow other people's tweets, and for instance add comments in form
of twitts to their posts.

Blogger is a blogging web applications, that allows user to share their opinion
wide range of people through writing. The writing (a so-called blog post) might
read, and the person that reads this, can often add an comments to the blog post.

While the benchmarks have a clear purpose, with a clearly de�ned start and
end state, social networking web applications behave more like operating system
applications, where the user can perform a selected number of tasks. However,
as long as the web application is viewed by the user, it often remains active, and
(e.g., Facebook) performs a set of underlying tasks.

To make a characterization and comparison easier, we have de�ned a set of use
cases, with clear start and end states. These use cases are intended to simulate
common operations and to provide repeatability of the measurements. The use
cases represent common user behavior in Facebook, Twitter, and Blogger. They
are based on personal experience, since we have not been able to �nd any detailed
studies of common case usage for social networks. The use cases are designed to
mimic user behavior rather than exhausting JavaScript execution.

0.1 -create event 0.2 -add entry 0.3 -find friend 0.4 -chat 0.5 -photos0.0 -messages 0.6 -logout

0 -login/home

0.3.0 -choose friend 0.3.1 -add friend

0.3.1.0 -send request0.3.0.0 -show friends 0.3.0.1 -show others

0.3.0.0.0 -browse friends

0.3.0.0.0.0 -choose last entry

0.3.0.0.0.0.0 -click on share 0.3.0.0.0.0.1 -click on wall

0.0.0 -Click on first message in list

Figure 3.1: Use cases to characterize the JavaScript workload of Facebook.

Figure 3.1, 3.2, and 3.3 give an overview of the di�erent use cases that we
have de�ned for Facebook, Twitter, and Blogger, respectively. Common for all
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use cases are that they start with the user login. From here the user has multiple
options.

For Facebook, the user �rst logs in on the system. Then, the user searches
for an old friend. When the user �nds this old friend, the user marks him
as a "friend", an operation where the user needs to ask for con�rmation from
the friend to make sure that he actually is the same person. This operation
is a typical example of an use case, which in turn is composed of several sub
use cases: 0 -login/home, 0.3 -find friend, 0.3.1 -add friend, and 0.3.1.0
-send request, as shown in Figure 3.1.

All use cases start with the login case, and we recognize an individual op-
eration, such as 0.3.1 -add friend as a sub use case, though it must complete
previous use cases. Further, we do allow use cases that goes back and forth be-
tween use cases. For example in Figure 3.2, if we want to both choose the option
0.1.0 -follow and 0.1.1 -mention, then we would need to visit the following
sub use cases: 0 -login/home, 0.1 -find person, 0.1.0 -follow, 0.1 -find

person, and 0.1.1 -mention.

Figure 3.2: Use cases to characterize the JavaScript workload of Twitter.

To enhance repeatability, we use the AutoIt scripting environment [11] to
automatically execute the various use cases in a controlled fashion. As a result,
we can make sure that we spend the same amount of time on the same or similar
operations, such as to type in a password or click on certain buttons. This is
suitable for the selected use cases.

3.4.4 HTML5 and the canvas element

There have been several attempts to add more extensive interactive multimedia to
web applications. These attempts could be roughly divided into two groups: plug-

52



Figure 3.3: Use cases to characterize the JavaScript workload of Blogger.

in technologies and scriptable extension to web browsers. Plug-ins are programs
that run on top of the web browser. The Plug-ins can execute some special type
of programs, and well known examples are Adobe Flash, Java Applets, Adobe
Shockwave, Alambik, Internet C++, and Silverlight. These require that the user
downloads and installs a plug-in program before they can execute associated
programs. Scriptable extensions introduce features in the web browser that can
be manipulated through, e.g., JavaScript.

HTML5 [35] is the next standard version of the HyperText Markup Language.
The Canvas in element HTML5 [32] has been agreed on by a large majority
of the web browser vendors, such as Mozilla FireFox, Google Chrome, Safari,
Opera and Internet Explorer 9. The Canvas element opened up for adding rich
interactive multimedia to web application. The canvas element allows the user
to add dynamic scriptable rendering of geometric shapes and bitmap images in
a low level procedural manner to web applications. A similar technology, albeit
at a higher level, is scalable vector graphics [70].

This element opens up for more interactive web applications. As an initiative
for programmers to explore and develop the canvas element further, a series of
competitions have been arranged [1, 101, 38]. The JS1k competition got 460
entries. The premise for this competition was that the entries should be less
than 1024 bytes in total (with an extra bonus if they would �t inside a tweet).
Further, it was forbidden to use external elements such as images. The entries
vary in functionality and features, which can be illustrated by the top 10 entries,
shown in Table 3.3, where half of them are something else than a game.
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Table 3.3: The top-10 contributions in the JS1K competition.

Name Developer

1 Legend Of The Bouncing Beholder @marijnjh
2 Tiny chess Oscar Toledo G.
3 Tetris with sound @sjoerd_visscher
4 WOLF1K and the rainbow characters @p01
5 Binary clock (tweetable) @alexeym
6 Mother fucking lasers @evilhackerdude
7 Graphical layout engine Lars Ronnback
8 Crazy multiplayer 2-sided Pong @feiss
9 Morse code generator @chrissmoak
10 Pulsing 3d wires @unconed

3.5 Experimental results

3.5.1 Comparison of the e�ect of just-in-time compilation

We have compared the execution time where just-in-time compilation (JIT) has
been enabled, against the execution time where the JIT compiler has been dis-
abled (NOJIT). When JIT has been disabled the JavaScript is interpreted as
bytecode. All modi�cations are made to the JavaScriptCore engine, and we have
used the GTK branch of the WebKit source distribution (r69918). We have
divided the execution time of the JIT version with the execution time of the
interpretation mode, i.e., Texe(JIT )/Texe(NOJIT ). That means, if

Texe(JIT )/Texe(NOJIT ) ≥ 1

then the JavaScript program runs slower when just-in-time compilation is en-
abled. We have measured the execution time that each method call uses in the
JavaScriptCore in WebKit.

In Figure 3.4 we have plotted the values of Texe(JIT ) / Texe(NOJIT ) for
a number of use cases for the top 3 social network applications, i.e., Facebook,
Twitter, and Blogger, for a set of use cases. The use cases presented in Figure 3.4
are extensions of each other, as discussed in Section 3.4. For instance, case0 is
extended into case1, and case1 is then extended into case2. Our results show
that the execution time increases in 9 out of 12 cases when JIT is enabled. This
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Figure 3.4: Relative execution time Texe(JIT ) / Texe(NOJIT ) for 4 use cases
from three di�erent social network applications.

especially pronounced for the more complicated use cases. The reason is the
non-repetitive behavior of the social network application use cases.

In Figure 3.5 we present the relative execution time Texe(JIT ) / Texe(NOJIT )
for the Alexa top 100 web sites and the �rst 109 JS1K demos. We have measured
the workload of them without any user interaction. The results in Figure 3.5 show
that for 58 out of the 100 web applications, JIT increases the execution time.
However, for those applications that bene�t from JIT, their execution times are
improved signi�cantly. For instance, the execution time for craiglist.com was
improved by a factor of 5000. For yahoo.co.jp JIT increased the execution time
by a factor of 3.99.

Further, in Figure 3.5 we see that JIT increased the execution time for 59
out of the 109 JS1K demos. When JIT fails, it increases the execution time by
a factor of up to 75. When JIT is successful, it decreases the execution time by
up to a factor of 263.

55



Figure 3.5: Relative execution time Texe(JIT ) / Texe(NOJIT ) for the �rst 109
JS1K demos and the top 100 Alexa web sites.

Finally, we have evaluated the e�ect of JIT on the four benchmark suites, i.e.,
Dromaeo, V8, Sunspider, and JSBenchmark, as shown in Figures 3.6 and 3.7. In
Figure 3.6, we show the results for 4 out of 5 of the V8 benchmarks2, 6 of the
Dromaeo benchmarks, and 10 of the JSBenchmarks. For V8, JIT is successful
in 3 out of 4 cases and the best improvement is a factor of 1.9, while in the
worst case the execution time is increased by a factor of 1.14. For Dromaeo JIT
improves the execution time for 3 out of 6 cases. The largest improvement is by
a factor of 1.54, while largest increase in execution time is by a factor of 1.32.
For the JSBenchmarks, JIT decreases the execution time for 7 out of 10 cases.
The largest decrease in execution time is by a factor of 1.6. The largest increase
in the execution time is by a factor of 1.07.

Finally, Figure 3.7 shows the results for the SunSpider benchmark. All
the applications in the SunSpider benchmark suite run equally fast or faster

2Earley-boyer, did not execute correctly with the selected version of WebKit

56



Figure 3.6: Relative execution time Texe(JIT ) / Texe(NOJIT ) for the V8, Dro-
maeo, and JSBenchmark benchmarks.

when JIT is enabled. The largest improvement is by a factor of 16.4. for the
string-validate-input application, and the smallest improvement is 1.0, i.e.,
none, for the date-format-tofte application.

In summary, JIT decreases the execution time for most of the benchmarks. In
contrast, JIT increases the execution time for more than half of the studied web
applications. In the worst case, the execution time was prolonged by a factor of
75 (id81 in the JS1K demos).

3.5.2 Comparison of bytecode instruction usage

We have measured the bytecode instruction mix, i.e., the number of executed
bytecode instructions for each bytecode instruction, for the selected benchmarks
and for the �rst 100 entries in the Alexa top list. Then, a comparison between the
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Figure 3.7: Relative execution time Texe(JIT ) / Texe(NOJIT ) for the Sunspider
benchmarks.

web applications and the SunSpider benchmarks is done, since these two di�er
the most.

The SunSpider benchmarks use a smaller subset of bytecode instructions than
the Alexa web sites do. The Alexa web sites use 118 out of 139 bytecode instruc-
tions, while the SunSpider benchmarks only use 82 out of the 139 instructions.
We have grouped the instructions based on instructions that have similar behav-
iors. The instruction groups are: prototype and object manipulation, branches
and jumps, and arithmetic/logical.

In Figure 3.8 we see that arithmetic/logical instructions are more intensively
used in the SunSpider benchmarks than in the web applications covered by Alexa
top 100. We also observe that the SunSpider benchmarks often use bit opera-
tions (such as left and right shift) which are rarely used in the web sites. This
observation suggests that even though these operations are important in low level
programming languages, it seems like these are rarely used in web applications.
The only arithmetic/logical operation that is more used in web applications is
the not instruction, which could be used in, e.g., comparisons.
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Figure 3.8: Branch, jump, and arithmetic/logical related bytecode instructions
for the Alexa top 100 web sites and the SunSpider benchmarks.

For the branch and jump bytecode instruction group, we observe in Figure 3.8
that jumps related to objects are common in Alexa, while jumps that are asso-
ciated with conditional statements, such as loops are much more used in the
benchmarks. A large number of jmp instructions also illustrates the importance
of function calls in web applications.

We notice that Alexa top 100 web applications use the object model of
JavaScript, and therefore use the object special features more than the bench-
marks. In Figure 3.9 we see that instructions such as get_by_id, get_by_id_self,
and get_by_id_proto are used more in the web applications than in the bench-
marks. Features such as classless prototyped programming are rarely found in
traditional programming languages which the benchmarks are ported from. A
closer inspections of the source code of the benchmarks con�rms this. It seems
like many of the benchmarks are embedded into typical object-based construc-
tions, which assist in measuring execution time and other benchmarks related
tasks. However, these object-based constructions are rarely a part of the com-
pute intensive parts of the benchmark.
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The observation above is further supported in Figure 3.9, by looking at in-
structions such as get_val and put_val, which the SunSpider benchmarks use
more extensively than the web applications. This suggests that the benchmarks
do not take advantage of JavaScript classless prototype features, and instead try
to simulate the data structures found in the original benchmarks.

Figure 3.9: Prototype and object related instructions for the Alexa top 100 web
sites and the SunSpider benchmarks.

3.5.3 Usage of the eval function

One JavaScript feature is the evaluate function, eval, that evaluates and executes
a given string of JavaScript source code at runtime. To extract information on
how frequently eval calls are executed, we have used the FireBug [23] JavaScript
pro�ler to extract this information. We have measured the number of eval

calls relative to the total number of function calls, i.e., No. of eval calls /
Total no. of function calls.
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Figure 3.10 presents the relative number of eval calls. Our results show that
eval functions are rarely being used in the benchmarks, only 4 out of 35 bench-
marks use the eval function. However, these four use eval quite extensively. The
dromaeo-core-eval benchmark has 0.27, sunspider-date-format-tofte has
0.54, sunspider-date-format-xparb has 0.28, and sunspider-string-tagcloud
has 0.15 relative number of eval calls. From their name, e.g., eval-test in the
Dromaeo benchmark, and by inspection of the JavaScript code and the amount
of eval calls, we suspect that these benchmarks were designed speci�cally to test
the eval function.

Figure 3.10: Number of eval calls relative to the total number of function calls
in the Dromaeo, V8, and SunSpider benchmarks.

We observe in Figure 3.11 that the eval function is used more frequently
in the Alexa top 100 web sites. 44 out of 100 web sites use the eval function.
In average, the relative number of eval calls is 0.11. However, there are web
sites with a large relative number of eval calls, e.g., in sina.com.cn 55% of all
function calls are eval calls.
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Figure 3.11: Number of eval calls relative to the number of total function calls
for the �rst 100 entries in the Alexa list.

3.5.4 Anonymous function calls

An anonymous function call is a call to a function that does not have a name.
In many programming languages this is not possible, but it is possible to create
such functions in JavaScript. Since this programming construct is allowed in
JavaScript, we would like to �nd out how common it is in JavaScript benchmarks
and web applications The relative number of anonymous function calls in the
benchmarks and the Alexa top 100 sites are shown in Figure 3.12.

We found that 3 of the anonymous function calls in the benchmarks were
instrumentations of the benchmark to measure execution time. If we removed
these 3 function calls we found that 17 out of the 35 benchmark used anonymous
function calls to some degree. For the entries in the top 100 Alexa web sites, we
found that 74 out of 100 sites used anonymous function calls. Some benchmarks
use anonymous function calls extensively. However, these seems to be speci�cally
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tailored for anonymous function calls, much like certain benchmarks were tailored
to test eval in Section 3.5.3.

Figure 3.12: Relative number of anonymous function calls in the Alexa top 100
web sites and the benchmarks.

3.6 Conclusions

In this study, we have evaluated and compared the execution behavior of JavaScript
for four di�erent application classes, i.e., four JavaScript benchmark suites, pop-
ular web sites, use cases from social networking applications, and the emerg-
ing HTML5 standard. The measurements have been performed in the WebKit
browser and JavaScript execution environment.

Our results show that benchmarks and real-world web applications di�er in
several signi�cant ways:

• Just-in-time compilation is bene�cial for most of the benchmarks, but actu-
ally increases the execution time for more than half of the web applications.
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• Arithmetic/logical bytecode instructions are signi�cantly more common in
benchmarks, while prototype related instructions and branches are more
common in real-world web applications.

• The eval function is much more commonly used in web applications than
in benchmark applications.

• Approximately half of the benchmarks use anonymous functions, while ap-
proximately 75% of the web applications use anonymous functions.

Based on the �ndings above, in combination with �ndings in previous stud-
ies [84, 89], we conclude that the existing benchmark suites do not re�ect the ex-
ecution behavior of real-world web applications. For example, special JavaScript
features such as dynamic types, eval functions, anonymous functions, and event-
based programming, are omitted from the computational parts of the bench-
marks, while these features are used extensively in web applications. A more
serious implication is that optimization techniques employed in JavaScript en-
gines today might be geared towards workloads that only exist in benchmarks.
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Chapter 4
Paper III

Thread Level Speculation as an Optimization Technique in
Web Applications for Embedded Mobile Devices - Initial
Results

Jan Kasper Martinsen, Håkan Grahn and Anders Isberg

Proceedings of the Sixth IEEE International Symposium on Industrial
Embedded Systems (SIES'11), pages 83�86, June 2011, Västerås, Sweden

4.1 Introduction

Current and future processor generations are based on multicore architectures,
and it has been suggested that performance increase will mainly come from an
increasing number of processor cores. In order to achieve an e�cient utilization of
an increasing number of processor cores, the software needs to be parallel as well
as scalable [7, 65, 100]. Due to the simplicity of distribution, along with increased
platform independence, many applications are moved to the World Wide Web, as
so called Web Applications, and new programming languages, e.g., JavaScript,
have emerged. JavaScript is a dynamically typed, object-based scripting lan-
guage with run-time evaluation, where execution is done in a JavaScript engine.
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To preserve platform independence and simplicity, there are currently no support
for threading. With the increased popularity of Web Applications and a higher
demand for performance, several classical hardware optimisation techniques have
been suggested along with a set of benchmarks to measure their e�ect. We
have argued that these benchmarks are unrepresentative, and that current opti-
misation techniques often degrades the performance for Web Applications [56].
Therefore we have called for di�erent optimisation techniques, and suggest that
multicore architectures should play a crucial part.

Developing parallel applications are di�cult, time consuming and error-prone
and therefore we would like to ease the burden of the programmer. To hide some
of the details, an approach is to dynamically extract parallelism from a sequential
program using Thread-Level Speculation (TLS) techniques [91].The performance
potential of TLS has been shown for applications with static loops, statically
typed languages, and in byte code environments.

Previously we have evaluated the performance of TLS together with the Rhino
JavaScript engine and evaluated it's performance with the V8 benchmark [55].
We are extending this study to the SquirrelFish JavaScript engine found in We-
bKit, and also perform experiments on Web Applications rather than the bench-
marks that we found to be unrepresentative.

The rest of the paper is organized as follows; Section 4.2 provides some back-
ground on TLS, JavaScript and Unrepresentative benchmarks. In Section 4.3, we
discuss our current research, in Section 4.4 we make an outline for future work
and �nally in Section 4.5 a conclusion.

4.2 Background

In Section 4.2.1 we present the general principles of thread-level speculation
and some previous implementation proposals. In Section 4.2.2 we discuss the
JavaScript language and �nally in Section 4.2.3 a brief summary of the unrepre-
sentativness of current JavaScript benchmarks.
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4.2.1 Thread-Level Speculation

Thread-Level Speculation Principles

Thread-level speculation (TLS) aims to dynamically extract parallelism from a
sequential program. One popular approach is to allocate each loop iteration to a
thread. Then, we can(ideally) execute as many iterations in parallel as we have
processors.

However data dependencies may limit the number of iterations that can be
executed in parallel. Further, the requirements and overhead for detecting data
dependencies can be considerable.

Between two consecutive loop iterations we can have three types of data
dependencies: Read-After-Write (RAW), Write-After-Read (WAR), and Write-
After-Write (WAW). A TLS implementation must be able to detect these depen-
decies during run-time using dynamic information about read and write addresses
from each loop iteration. A key design parameter is the precision of what gran-
ularity the TLS system can detect data dependency violations.

When a data dependency violation is detected, the execution must be aborted
and rolled back to safe point in the execution. Thus, all TLS systems need a roll-
back mechanism. The book-keeping related to this functionality results in both
memory overhead as well as run-time overhead. In order for TLS systems to be
e�cient, the number of roll-backs should be low.

A key design parameter for a TLS system is the data structures used to
track and detect data dependence violations. The more precise tracking of data
dependencies, the more memory overhead is required. Unfortunately, one e�ect
of imprecise dependence detection is the risk of a violation that is detected when
no actual dependence violation is present.

TLS implementations can di�er depending on whether they update data spec-
ulatively 'in-place', i.e., moving the old value to a bu�er and writing the new value
directly , or in a special speculation bu�er. Updating data in-place usually result
in higher performance if the number of roll-backs is low, but lower performane
when the number of roll-backs is high since the cost of doing roll-backs is high.
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Software-Based Thread-Level Speculation

There exists a number of di�erent software-based TLS proposals, and we review
some of the most important ones here.

Bruening et al. [13] proposed a software-based TLS system that targets loops
where the memory references are stride-predictable. Further, it is one of the
�rst techniques that is applicable to while-loops where the loop exit condition is
unknown until the last iteration.The results show speed-ups of up to almost �ve
on 8 processors.

Rundberg and Stenström [91] proposed a TLS implementation that resembles
the behavior of a hardware-based TLS system. They show a speedup of up to
ten times on 16 processors for three applications.

Kazi and Lilja developed the course-grained thread pipelining model [41] for
exploiting coarse-grained parallelism. They suggest to pipeline the concurrect ex-
ecution of loop iterations speculatively, using run-time dependence checking. On
an 8-processor machine they achieved speed-ups of between 5 and 7. Bhowmik
and Franklin [9] developed a compiler framework for extracting parallel threads
from a sequential program for execution on a TLS system. They support both
speculative and non-speculative threads, and out-of-order thread spawning yield-
ing speed-ups between 1.64 and 5.77 on 6 processors.

Cintra and Llanos[17] present a software-based TLS system that speculatively
execute loop iterations in parallel within a sliding window. By using optimized
data structures, scheduling mechanisms, and synchronization policies they man-
age to reach in average 71% of the performance of hand-parallelized code for six
applications

Chen and Olukotun present two studies on [15, 16] how method-level paral-
lelism can be exploited using speculative techniques. Their techniques are imple-
mented in the Java runtime parallelizing machine (Jrpm). On four processors,
their results show speed-ups of 3 − 4, 2 − 3, and 1.5 − 2.5 for �oating point
applications, multimedia applications, and integer applications, respectively.

Picket and Verbrugge [80, 81] developed SableSpMT,a framework for method-
level speculation and return value prediction in Java programs. Their solution
is implemented in a Java Virtual Machine, called SableVM, and thus works at
byte code level. They obtain at most a two-fold speed-up on a 4-way multi-core
processor.
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Oancea et al. [78] present a novel software-based TLS proposal that sup-
ports in-place updates. Further, their proposal has a low memory overhead with
a constant instruction overhead, at the price of slighty lower precision in the
dependence violation detection mechanism. However, the scalability of their ap-
proach is superior due to the fact that they avoid serial commits of speculative
values, which in many other proposals limit the scalability. The results show that
their TLS approach reaches in average 77% of the speed-up of hand-parallelized,
non-speculative versions of the programs.

A study by Prabhu and Olukotun [82] analyzed what types of thread-level
parallelism that can be exploited in the SPEC CPU2000 Benchmarks[96]. By
going through each of the applications, they identi�ed a number of useful trans-
formations, e.g., speculative pipelining, loop chunking/slicing, and complex value
prediction. They also identi�ed a number of obstacles that hinder or limit the
usefulness of TLS parallelization.

All studies presented above have worked with applications written in C, For-
tran, or Java. The Java studies have been done at the bytecode level.

In [53] and [55] we have used the TLS technique for a dynamic language such
as JavaScript. As seen in Figure 4.1 there is a modest speedup for a few instances

4.2.2 JavaScript

JavaScript [37] is a dynamically typed, object-based scripting language with run-
time evaluation often used in assosiation with Web Applications. JavaScript
application execution is done in a JavaScript engine, i.e., an interpretator/virtual
machine that parses and executes the JavaScript program.

The performance of these script engines have increased signi�cantly during
the last years, reaching very high single-thread performance. However, today
no o�cial JavaScript engine supports parallel execution of threads. Although
this could change in the future, it is still the programmer who is responsible for
�nding and expressing the parallelism.

4.2.3 Unrepresentative benchmarks

We found that JavaScript benchmarks were ported from existing benchmark
suites, and that thanks to the �exibility of the JavaScript porgramming language,
one could port without utilizing certain JavaScript features (for instance such as
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Figure 4.1: Relative execution time with TLS enabled, normalized to the execu-
tion time withou TLS enabled.

anonymous and eval function call) [54, 56]. However we measured the JavaScript
workload for a large number of popular Web Applications, with in-depth measure-
ments for so-called social networks, and we found that these JavaScript features
play an important role in real-life Web Applications.

We also found that features, which are optimized for quite heavily in the
benchmarks, such as large loops, a large amount of artimetic instructions (Fig-
ure 4.2) were to a large extent absent in Web Applications.

We found the reason to be, that there is no interrupt mechanism in JavaScript,
so that large loops make the Web Application unresponsive. Large loop like
structures are instead con�ned into anonymous functions calls made by events.

This observations suggests that attention should be given to the features in
JavaScript that come along with being a dynamic programming language. We
have also found evidence that new multimedial functionalities will be even more
dependent on JavaScript and these features.
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Figure 4.2: Number of aritmetic instructions in the bytecode produced by Squir-
rel�sh for Sunspider benchmark and for a set of Web Applications

4.3 Current work

We have acknowledged the di�erence between real world web applications and
the established benchmarks. These studies suggested that only focusing on the
JavaScript interpreter in an environment without the web browser could lead
to false results. We are currently working to incorporate these techniques into
WebKit's JavaScript interpreter SquirrelFish. SquirrelFish is an register based
interpreter.

Being a register based interpreter suggests some more book-making challenges
when it comes to recording changes before speculation. The register could be
serving as a temporary placement of a variable.
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However, the register also seems to decrease the complexity of duplicating
values before speculation (on earlier experiments, with stack based interpreter
we were forced to duplicate a large amount of the stack before speculation).

We have also found that for anonymous and evaluate function calls the number
of con�icts is quite low, if we compare to normal JavaScript functions calls. It
seems that these functions are less prone to have con�icts with global variables,
and therefore could possibly be better candidate for speculations. In addition, in
the initial discussion of TLS, we suggested that for loops, the ideal were that one
would be able to add one iteration per thread. As we mentioned in the previous
section, due to the lack of an interrupt mechanism we were forced to use events
to simulate large loops, and that anonymous functions typically were associated
with events. From this, we suggest that anonymous function, as an function that
for certain Web Applications is called extensively. Global variables access might
be quite rare from such a function, and therefore it will be a good candidate for
speculation.

4.4 Future work

We believe that TLS is a promising route for optimisation of Web Applica-
tions. With the increasing amount of dynamic multimedia in Web Application,
JavaScript's workload might increase signi�cantly in the near future. Similar ap-
plications in a desktop environment have large loops, and as we suggested that
loops, events and anonymous functions will play a key role for Web Applications.

We have shown that traditional hardware centric optimisation techniques
(such as just in time compilation) have limited e�ect on real-life Web Appli-
cations. This would be true for both ARM and Intel architectures. However, we
have not found any studies that decides which one of is the better when such an
optimisation is successful.

Another interesting proposition is the following; Web Applications usually
reside on the Internet, we could have some sort of mechanism to record successful
and not so successful speculations attempts. This information could later be used
for future speculations.
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4.5 Conclusion

TLS speculation in Web Application is a promising technique to increase perfor-
mance. One of the more interesting parts is the increase of multimedia workloads,
which could prove this technique even more promising. We will give this work-
load, along with a di�erent platform much attention in our future work.
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Chapter 5
Paper IV

Enhancing JavaScript Performance in Web Applications
Using Speculation

Jan Kasper Martinsen, Håkan Grahn, and Anders Isberg

IEEE Internet Computing - special issue on "Virtualization", 17(2): 10�19,
March/April 2013

5.1 Introduction

JavaScript [37] is a dynamically typed, object-based scripting language where the
JavaScript code is compiled to bytecode instructions at runtime which in turn are
interpreted in a JavaScript engine [30, 108, 72]. One of the most common uses for
JavaScript is to add interactivity to the client side part of web applications. Mod-
ern web applications are complex networks of code running on multiple servers
and in the client-side web browser. Our intention with this work is to speed up
the client-side execution.

Several JavaScript optimization techniques and benchmarks have been sug-
gested, but these benchmarks have been reported as unrepresentative for JavaScript
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execution in web applications [84, 89, 56]. One result of this, is that the popular
optimization technique just-in-time compilation (JIT) where the JavaScript code
�rst is compiled then executed as native code decreases the execution time for
JavaScript benchmarks, while it often increases the JavaScript execution time in
popular web applications [58].

JavaScript is a sequential programming language and cannot take advantage
of multicore processors. Fortuna et al. [25] showed that there exists signi�cant
potential parallelism in many web applications with a speedup of up to 45 times
compared to the sequential execution. However, they have not implemented sup-
port for parallel execution in any JavaScript engine. Web Workers [104] allows
parallel execution of tasks in web applications, but it is the programmer's respon-
sibility to extract and express the parallelism.

To hide the details of the underlying hardware, one approach is to dynamically
extract parallelism from a sequential program using Thread-Level Speculation
(TLS), see sidebars �Thread-Level Speculation Principles� and �Software-Based
Thread-Level Speculation�. The performance potential of TLS has been shown for
applications with static loops, statically typed languages, in Java bytecode envi-
ronments, and recently there have been some initial attempts for JavaScript. For
example, Martinsen and Grahn [55] proposed to use TLS in the Rhino JavaScript
engine.

In this paper, we present an implementation of TLS in the Squirrel�sh [108]
JavaScript engine used in the WebKit browser environment. Our approach relies
on method-level speculation, including return value prediction. We evaluate the
implementation using 15 popular web applications. The execution and behaviour
of a web application is dependent not only on the JavaScript engine itself, but
also on the interaction between JavaScript and the web browser such as manip-
ulation of the Document Object Model (DOM) tree. However, in this paper we
deliberately focus on the JavaScript aspect.

In this work we observe and con�rm that web application execution has may
opportunities for speculative execution:

1. The event driven nature leads to many independent function calls that are
candidates for successful Thread-Level Speculation.

2. The support and pervasive use of anonymous functions, dynamically gen-
erated un-named functions, in JavaScript programming are also good can-
didates for TLS.
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3. Like other scripting based languages, JavaScript supports dynamic execu-
tion through primitives such as 'eval', where a string is evaluated at runtime
as code. Use of this technique in web applications results in further useful
TLS opportunities.

The large number of functions calls, due to events or the use of anonymous
functions and 'eval' usage, can lead to a large number of TLS opportunities.
However, it also means that the potential memory overheads for managing and
tracking them can be signi�cant. This is similar to why JIT based approaches
can su�er excessive memory and runtime penalties for web applications execution.
The large use of event-generated dynamic functions induce many invocations of
the JIT compiler and result in many JITed code fragments that must be stored,
managed and eventually evicted when unfortunately they are not re-executed
enough to justify the overheads.

5.2 JavaScript and web applications

JavaScript [37] is a dynamically typed, object-based scripting language with run-
time evaluation often used to add interactivity in web applications. JavaScript
execution is �rst compiled to bytecode instructions, which then are executed in a
JavaScript engine. JavaScript has a syntax similar to C and Java, while it o�ers
functionalities found in dynamic programming languages, such as anonymous and
evaluate functions.

JavaScript engines such as Google's V8 engine [30], WebKit's Squirrel�sh
[108], and Mozilla's SpiderMonkey and TraceMonkey [72] have high single-threaded
performance for a set of benchmarks. However, such performance results can be
misleading [84, 89, 56] for web applications, and optimizing towards the charac-
teristics of these benchmarks may increase the execution time for real-life web
applications [58].

Web applications are commonly web pages with interactive functionality ex-
ecuted in a JavaScript engine. Web application functionality is typically de�ned
as events. These events are de�ned as JavaScript functions that are executed
when certain things occur in the web application, e.g., on mouse clicks, when a
web page is loaded for the �rst time, or tasks that are executed between time
intervals. In contrast to JavaScript alone, web applications might manipulate
parts of the web application that are not directly accessible from a JavaScript
engine alone. The functionality is simply executed in a JavaScript engine, but
the program �ow is part of the web application.
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Previous studies have shown that the execution behavior of JavaScript in web
applications di�ers substantially from the execution behavior of most JavaScript
benchmarks. Web applications use dynamic programming language features ex-
tensively [84, 89, 56], where various parts of the program are de�ned at runtime
(through eval functions), and types and extensions of objects are rede�ned dur-
ing runtime (for instance through anonymous functions). This has, in terms of
execution time, two major consequences: First, just-in-time compilation often
fails to decrease the execution time. This is caused by the lack of large loop
like structures in the web applications and a signi�cant overhead in compiling
small JavaScript code sequences to native code. Second, interactive structures
are often de�ned in the web application as events. These events are executed as
functions. Therefore, there will be a large number of function calls, which is a
suitable workload for TLS.

5.3 Thread-Level Speculation Implementation for

JavaScript

5.3.1 Speculation mechanism

From a high-level view the JavaScript execution in Squirrel�sh can be divided
into two stages, �rst the JavaScript code is compiled into bytecode instructions,
then the bytecode instructions are executed in the JavaScript engine. We extract
two things: The compiled bytecode instructions which are to be executed, and
the execution trace of a sequential execution of the bytecode instructions. We
use the sequential execution trace to validate the correctness of the speculative
execution in our experiments o�-line. The bytecode instruction execution trace
contains the order in which the bytecode instructions were executed and the
values associated with the computation of the bytecode instructions. We have
made modi�cations to the Squirrel�sh interpreter so an instance of it is executed
as a thread.

The compiled bytecode instructions from the web application is sent to our
modi�ed Squirrel�sh interpreter. We initialize a counter realtime to 0. For each
executed bytecode instruction, the value of realtime is increased by 1. We give
the interpreter a unique id (p_realtime) (initially this will be p_0).

During execution we might encounter the bytecode instruction that indicates
the start of a function call. We extract the realtime value and the id of the
thread that makes this call, e.g., p_0220 (a function is called after 220 bytecode
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instructions from p_0). We denote the value of the position of this function call
as function_order, which emulates the sequential time in a TLS program (Fig-
ure 5.1). We check if this function previously has been speculated by looking up
the value of previous[function_order]. previous is a vector where each entry is
organized by the function_order of the respective function that tells us whether
this function has been speculated on before. If the value is 1, then the function
has previously been speculated unsuccessfully. If the value is 0, then it has not
been speculated or has been successfully speculated, and we denote the position
of the function call as a fork point.

Figure 5.1: The JavaScript program P0, performs 3 function calls, P01, P02 and
P03. P01 performs two function calls, P011 and P012. Thus, we have created
a speculation tree from the function calls. If we traverse this tree from left to
right, we get an order in which the functions are called, equal to the order that
the functions would be sequentially called. More speci�c: P0 at time 1, P01 at
time 2, P011 at time 3, P012 at time 4, P02 at time 5, and P03 at time 6. We
denote how each function is ordered as function_order.

If the position of the function call is a fork point, we do the following; We set
the position of the function call's previous[function_order] = 1 to make sure
that we never set this as a fork point in the future, in case of a rollback. We copy
the state of the JavaScript engine right before the fork point, which will be used
in case of a rollback. This state contains the following: The list of previously
modi�ed global values, the list of states from each thread, the content of the
registers, and the content of previous.

Then we create a new (or reuse an old) thread which contains a new Squir-
rel�sh engine. We create a unique id for this thread. In addition, we copy the
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value of realtime from its parent. We modify the state of the parent such that the
current instruction is changed from the position of the "function call" bytecode
instruction to the position of the associated "end of function call bytecode" in-
struction. In other words, the parent thread skips the function call and continues
to execute speculatively after the function call.

Now we have two interpreters running as concurrent threads, and this process
is repeated for each function encountered which could be a suitable candidate for
speculation, thereby allowing nested speculation. If there is a con�ict between two
global variables, an incorrect return value prediction or writing to the DOM tree
we perform a rollback to the point where the speculation started. In Figure 5.2,
we outline the process of speculation and a subsequent rollback to restore the
execution to a safe state, i.e., commit or where the speculation started.

5.3.2 Data dependence violation detection

In order to achieve a correct speculative execution, we check for write and read
con�icts between global variables, object property id names, and unsuccessful
return value predictions of function calls. Each global variable has a unique
identi�cation, uid, which is either the index of the global variable or the name of
the id in the object property.

When we encounter a read or write bytecode instruction, we check the global
list variable_modification. This is a list that contains previous reads and writes
for all uids sorted per uid. If the uid is not in the list, we lock variable_modification,
insert uid in variable_modification, create a sublist for reads and writes to that
uid, and insert the type of bytecode instruction, realtime, and function_order
as the �rst element of the sublist. If there were no con�icts between the current
executed bytecode and previous reads and writes of the uid, we insert an element
to the head of the sublist for this uid with the type of bytecode, realtime, and
function_order.

Each time we encounter a read or write access to a uid, we evaluate the
following cases in variable_modification:

(i) The current operation is a read, and there is a previous read to the same
uid. In this case, the order in which the uid is read does not matter.

(ii) The current operation is a read, and there is a previous write to the same
uid. In this case, we must check the realtime and the function_order for
the current read and the previous write. If a read occured such that
current function_order>previous function_order
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and current realtime<previous realtime then the execution order of the
program is no longer correct and we must do a rollback.

(iii) The current operation is a write, and there is a previous read to the same
uid. In this case, we check the realtime and the function_order from the
current write and the previous read. If
current function_order>previous function_order and
current realtime<previous realtime, then the execution order of the pro-
gram is no longer correct and we must do a rollback.

(iv) The current operation is a write, and there is a previous write to the same
uid. We need to do a rollback if the current write happens before the pre-
vious write in realtime and they have the other order in function_order,
or if the order of the write happens after the previous write in realtime but
before the previous write in function_order.

5.3.3 Rollback

Cases (ii), (iii), and (iv) force us to do a rollback to ensure program correctness
globally. We also do rollbacks if we write to the DOM tree. After a rollback,
the program is re-executed from a point before the function was speculated. At
this point information for relevant threads are extracted, e.g., previous at this
point, the number of associated threads at this point, the values of the associated
registers, the values of the global variables and id are restored for the associated
threads, the value of previous (with the index of this failed speculation set to 1),
and the variable con�icts in variable_modification.

Even though we have a set of threads that are supposed to be active, there
might be threads after the rollback that are not associated with the current state
of the TLS system. Therefore, we need to recursively go through the threads
and their child threads that are now part of the active state. The resulting list
contains the threads which are necessary in the current state of execution. The
remainder of the threads and their associated interpreter are stopped and set to
an idle state for later reuse.

5.3.4 Commit

When a speculative thread reaches its end of execution, its modi�cations of global
variables and object property ids need to be committed back to its parent thread.
The commit cannot be completed before child threads from this thread have
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returned and have committed their values back to their parent thread. These
threads are denoted as child threads, and their updates to global variables and
object property ids are to be committed to the current thread. If the associated
JavaScript function has a return value, which we fail to predict correctly, or if
executing the function causes violations to the sequential semantics, we have to
rollback.

5.4 Experimental Methodology

We have selected 15 web applications from the Alexa list [4] of most visited web
applications. We selected popular web applications to cover di�erent types of
web applications, while making sure that these were being used by a reasonably
large group of users. The selected applications along with short descriptions are
found in Table 5.1.

We have de�ned and recorded a set of use-cases for the selected web appli-
cations where the use-cases are intended to exhibit example usage and then exe-
cuted them in WebKit. To enhance reproducibility, we use the AutoIt scripting
environment [11] to automatically execute the various use-cases in a controlled
fashion. The methodology for the experiments is described in [56].

All experiments are conducted on a system running Ubuntu 10.04 and equipped
with dual quad-core processors (i.e., in total 8 cores) and 16 GB main memory.
We have measured the execution time of the JavaScript execution performed in
the JavaScript engine. We executed each use case ten times and take the median
of the results for comparison.

To validate the correctness of our TLS implementation we have done the fol-
lowing: We have compared the executed bytecode instructions with the commit-
ted bytecode instructions in our TLS implementation and compared the return
values and the written values against the sequential execution trace.

5.5 Experimental Results

5.5.1 Speedup with TLS and JIT

We compare the JavaScript execution times of a set of web applications with
TLS, the Google V8 JIT engine, or the JIT enabled Squirrel�sh engine to the
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Application Description

Google Search engine
Facebook Social network
YouTube Online video service
Wikipedia Online community driven encyclopedia
Blogspot Blogging social network
MSN Community service from Microsoft
LinkedIn Professional social network
Amazon Online book store
Wordpress Framework behind blogs
Ebay Online auction and shopping site
Bing Search engine from Microsoft
Imdb Online movie database
Myspace Social network
BBC News paper for BBC
Gmail Online web client from Google

Table 5.1: List of web applications used in this study, listed from the most popular
(Google) to least popular (Gmail) but all within the top 100 web applications [4].

sequential execution time on the unmodi�ed interpreted Squirrel�sh engine, as
in Equation 5.1.

Texe(sequential execution time)

Texe(with TLS or with JIT or with Google V 8)
(5.1)

In Figure 5.3 we see that:

• TLS always decreases the execution time

• The Squirrel�sh JIT based engine increases the execution time for 10 out
of 15 cases (similar to the results in [59])

• The Google V8 JIT engine increases the execution time for 8 out of 15 cases

YouTube executes up to 8.4 times faster than the sequential execution on a dual
quad core computer when TLS is enabled. We have veri�ed that the superlinear
speedup is due to cache e�ects. This makes sense by looking at the large number
of threads and low number of rollbacks (Table 5.2). We see that a large number of
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Figure 5.2: We have illustrated an example of a successful speculation (a) and an

usuccessful one that force us to do a rollback to preserve sequential semantics (b). In

(a) at time 1 in thread 0 we write the value 7 to the global value x. At time 2 in thread

0 we encounter a function which we speculate on and it becomes thread 1. At time 3,

thread 0 reads 7 from the global variable x. At time 4 thread 1 reads the same variable.

At time 5 the function which is thread 1, returns and the global variables are committed

back to thread 0. In (b) we write 7 to x in thread 0 at time 1. At time 2 thread 0

makes a function calls that becomes thread 1. At time 3 thread 0 writes a value 5 to

global variable x. At time 4 thread 1 reads 5 from the variable x. In the sequential

case, the function called at time 2, the value of variable x would have been 7 at time

2, and thread 0 would write 5 to x �rst after the function has returned. This means

that thread 1 is squashed, and when we commit the values at time 5 we can no longer

ensure sequencial semantics (which is detected outside of the mechanisms described in

section 5.3.2). Therefore at time 6, we need to restore the JavaScript parent to the

point before we forked the function and do not speculate on this function call.

speculations and a low number of rollbacks are typical for all 15 web applications.
However, the improved execution time varies between the web applications.

5.5.2 General execution behavior

In Table 5.2 we have collected a set of numbers related to the execution behavior
of a set of web applications when we use TLS.

The results show that we are able to speculate on a very large number of
JavaScript functions for all the web applications except Wikipedia, and in most
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Figure 5.3: JavaScript execution speedup over the interpreted sequential
JavaScript engine for the 15 web applications when TLS is enabled, when just-
in-time compilation is enabled and for the Google v8 JIT engine in the chromium
web browser. We have written the execution time of TLS relative to the sequen-
tial execution time in parenthesis after the name of the web applications.

cases we speculate well over a thousand times. This indicates that there is a
high potential parallelism in web applications, which is in line with [25]. We also
observe that the number of rollbacks during execution is small as compared to
the number of speculations. In general, we speculate a large number of times for
each rollback. For 13 out of 15 web applications we speculate between 16 and 92
times for each rollback.

We have measured the largest number of functions that are executed concur-
rently during the execution, i.e., the maximum number of threads. We observe
that in general we are able to execute a large number of threads concurrently,
e.g., 7 of the web applications execute more than 50 threads concurrently. We
have also measured the deepest nesting speculation during execution, i.e., the
maximum speculation depth. Our results show no obvious relationship between
the maximum speculation depth and the maximum number of threads.

The average depth shows the depth of the recursive search when we complete
the execution of a speculated function (either after a rollback or when we commit
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the result of the execution of a function). In order to �nd the information to evict,
we need to do a recursive search in the speculation tree, and we have measured the
average depth for these searches. We have not observed any relationship between
the maximum speculation depth and the average depth we need to search to
remove information.

Finally, we have measured the average memory usage for storing information
during speculation by measuring it at each rollback. In general, the memory
requirements for storing data associated with the speculation are relatively small,
but we have observed high peaks of memory usage (up to 300 MB).

We know from previous research [84, 89, 56] that JavaScript execution in web
applications is to a large extent event driven, and that these events are visible to
the JavaScript engine as function calls. This behavior is visible as a large number
of function speculations.

Our results indicate that even though there is a risk for write and read con-
�icts, these rarely happen for the use cases. We can see this by a large number of
speculations, and a small number of rollbacks, i.e., the relative number of spec-
ulations over rollbacks is high. Another indication of the lack of write and read
con�icts is the large number of threads that we are able to execute concurrently.
Due to the large number of speculations and low number of rollbacks, we are able
to execute a relatively large number of functions concurrently (maximum number
of threads).

From the maximum speculation depth we see that a large speculation depth
does not necessarily mean a large number of threads. There is also no relationship
between a large search depth and the amount of data we clear out after a rollback
or a commit. We also see that the average memory usage varies between the
cases, and there is no clear relationship between average memory usage and a
large speculation depth.

5.6 Concluding remarks

JavaScript is a sequential language and cannot take advantage of multicore pro-
cessors. Our approach is to dynamically identify and extract parallelism using
Thread-Level Speculation (TLS).

In this paper, we have presented and evaluated an implementation of TLS in
the Squirrel�sh JavaScript engine [108]. We speculate at function level and sup-
port nested speculation, i.e., a function that is executing speculatively can create
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App. No. No. Spec. / Max. no. Max. spec. Avg. Mem.
spec. rollbacks rollbacks threads depth depth usage (MB)

Amazon 10768 267 40.31 83 23 8.0 14.1
BBC 6392 154 41.51 117 14 5.12 33.0
Bing 303 18 16.83 30 7 2.22 1.4
Blogspot 778 15 51.87 16 14 2.16 1.6
Ebay 7140 101 70.69 63 15 5.33 27.0
Facebook 968 51 18.98 27 22 9.16 7.1
Gmail 1193 19 62.79 34 10 2.68 1.95
Google 1282 36 35.61 40 10 3.9 5.5
Imdb 5300 156 33.97 54 24 6.85 17.8
LinkedIn 1815 51 35.59 36 11 2.27 7.1
MSN 12012 133 90.32 191 24 5.85 20.1
Myspace 3679 93 39.56 39 14 5.54 17.4
Wordpress 5852 63 92.89 63 99 4.55 9.7
Wikipedia 12 0 undefined 8 4 0 1.1
YouTube 7349 25 293.96 407 13 5.44 17.1

Table 5.2: Number of speculations, number of rollbacks, relationship between
rollbacks and speculations, maximum number of threads, maximum nested spec-
ulation depth, average depth for recursive search when deleting values associated
with previous speculations, and average memory usage before each rollback (in
megabytes).

new speculatively executed functions. Our evaluation is based on 15 popular web
applications from the Alexa top list [4].

Our TLS implementation improves the performance for all studied web ap-
plications. In contrast, we found that just-in-time compilation decreases the
performance for 10 out of 15 web applications. Our results show that for the se-
lected web applications, TLS signi�cantly reduces the execution time. Speedups
of up to 8.4 times were achieved compared to a sequential execution. The perfor-
mance improvements are achieved without modifying any of the JavaScript source
code (thus hiding the details of taking advantage of multicore processors from the
JavaScript programmer). Our results show a large number of speculations with
few rollbacks.

We have also evaluated how nested speculation works. The maximum spec-
ulation depth ranges from 4 (Wikipedia) to 99 (Wordpress), while the average
depth when we search for data made irrelevant after a rollback or a commit goes
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up to 9.16 (Facebook). Our results indicate that we can �nd a large number of
function calls, which will be a suitable workload for TLS. Further, nested specu-
lation is important in order to �nd a su�cient number of suitable functions for
speculation, and thus achieving a high degree of dynamic parallelism. Since spec-
ulation requires the state of the JavaScript engine to be stored at the speculation
point, the memory overhead sometimes can be large.
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Sidebar: Thread-Level Speculation Principles

TLS aims to dynamically extract parallelism from a sequential program. This can
be done both in hardware, e.g., [14, 85, 98], and software, see sidebar �Software-
Based Thread-Level Speculation�. Two main approaches exist: Loop level paral-
lelism and method level speculation.

Loop level is a popular approach where each loop iteration is assigned to
a thread. Then, we can (ideally) execute as many iterations in parallel as we
have processors. However there are limitations, data dependencies may limit
the number of iterations that can be executed in parallel. Further, the mem-
ory requirements and run-time overhead for detecting data dependencies can be
considerable.

In method level we try to execute each function call as a thread. With this ap-
proach, in addition to loop level parallism we need to correctly predict the return
values when we speculate and the writes and reads that cause the speculative pro-
gram to violate sequential semantics. The last two are typically detected when
the values associated with two function calls are commited back to its parent
thread.

Between two speculative threads we can have three types of data dependen-
cies: Read-After-Write (RAW),Write-After-Read (WAR), andWrite-After-Write
(WAW). A TLS implementation must be able to detect these dependencies during
run-time using information about read and write addresses from each loop itera-
tion. A key design parameter for a TLS system is precision of what granularity
it can detect data dependency violations.

When a data dependency violation is detected, the execution must be aborted
and rolled back to a safe point in the execution. Thus, all TLS systems need a
rollback mechanism. In order to be able to do rollbacks, we need to store both
speculative updates of data as well as the original data values. As a result, the
book-keeping related to this functionality results in both memory overhead as
well as run-time overhead. In order for TLS systems to be e�cient, the number
of rollbacks should be low.

A key design parameter for a TLS system is the data structures used to
track and detect data dependence violations. The more precise tracking of data
dependencies, the more memory overhead is required. Unfortunately, one e�ect of
imprecise dependence detection is the risk of a false-positive violation, i.e., when
a dependence violation is detected when no actual (true) dependence violation is
present. As a result, unnecessary rollbacks need to be done, which decreases the
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performance. TLS implementations can di�er depending on whether they update
data speculatively 'in-place', i.e., moving the old value to a bu�er and writing
the new value directly, or in a special speculation bu�er.
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Sidebar: Software-Based Thread-Level Speculation

There exist a number of di�erent software-based TLS proposals, and we review
some of the most important ones here.

Bruening et al. [13] proposed a software-based TLS system that targets loops
where the memory references are stride-predictable. Further, it is one of the
�rst techniques that is applicable to while-loops where the loop exit condition is
unknown until the last iteration. They evaluate their technique on both dense
and sparse matrix applications, as well as on linked-list traversals.

Rundberg and Stenström [91] proposed a TLS implementation that resem-
bles the behaviour of a hardware-based TLS system. The main advantage with
their approach is that it tracks data dependencies precisely, thereby minimiz-
ing the number of unnecessary rollbacks caused by false-positive violations. The
downside is the high memory overhead.

Kazi and Lilja developed the course-grained thread pipelining model [41] ex-
ploiting coarse-grained parallelism. They suggest to pipeline the concurrent exe-
cution of loop iterations speculatively, using run-time dependence checking.

Bhowmik and Franklin [9] developed a compiler framework for extracting
parallel threads from a sequential program for execution on a TLS system. They
support both speculative and non-speculative threads, and out-of-order thread
spawning. Further, their work addresses both loop as well as non-loop parallelism.

Chen and Olukotun [16] have studied how method-level parallelism can be ex-
ploited using speculative techniques. The idea is to speculatively execute method
calls in parallel with code after the method call. Their techniques are imple-
mented in the Java runtime parallelizing machine (Jrpm).

Picket and Verbrugge [80] developed SableSpMT, a framework for method-
level speculation and return value prediction in Java programs. Their solution is
implemented in a Java Virtual Machine, called SableVM, and thus works at the
bytecode level.

Oancea et al. [78] present a novel software-based TLS proposal that sup-
ports in-place updates. Further, their proposal has a low memory overhead with
a constant instruction overhead, at the price of slightly lower precision in the
dependence violation detection mechanism. However, the scalability of their ap-
proach is superior due to the fact that they avoid serial commits of speculative
values, which in many other proposals limit the scalability.
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Mickens et al. introduce Crom [68], a JavaScript speculation engine. Crom
rewrite event handles to speculative ones and execute them in a cloned browser
context. Crom is implemented in a JavaScript library and runs on unmodi�ed
JavaScript engines. Speculative event handlers are mainly executed when the
main execution thread is idle.

Mehrara et al. have addressed how to utilize multicore systems in JavaScript
engines [67] as well as a lightweight speculation mechanism for dynamic paral-
lelization of JavaScript applications [66]. However, their studies have a di�erent
approach as well as a di�erent target than we have. They target mainly loop
parallelization, and target trace-based JIT-compiled JavaScript code where the
most common execution �ow is compiled into an execution trace. Then, runtime
checks (guards) are inserted to check whether control �ow etc. is still valid for
the trace or not. They execute the runtime checks (guards) in parallel with the
main execute �ow (trace).
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Chapter 6
Paper V

Heuristics for Thread-Level Speculation inWeb Applications

Jan Kasper Martinsen, Håkan Grahn, and Anders Isberg

IEEE Computer Architecture Letters, (published on-line 20 November 2013)

6.1 Introduction

JavaScript is a dynamically typed, object-based scripting language with run-time
evaluation, where execution is done in a JavaScript engine [30, 108, 72]. Several
optimization techniques have been suggested to decrease the execution time of
JavaScript, e.g., just-in-time compilation (JIT) [30, 108, 72]. Thread-Level Spec-
ulation (TLS) [91] has been proposed as an approach to take advantage of parallel
hardware, both for JavaScript benchmarks [66] and web applications [68, 63].

Previous work have shown that there are signi�cant di�erences in the execu-
tion behavior of JavaScript benchmarks and real-world web applications, e.g. [56,
84, 89]. One of the consequences is that JIT often increases the execution times
in web applications, while TLS decreases the execution times [56, 63]. A study
by Fortuna et al. [25] shows potential JavaScript speedups of up to 45 times with
parallelism in web applications.
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Mehrara and Mahlke [67] address how to utilize multicore systems in JavaScript
engines. They target trace-based JIT-compiled JavaScript code, where the most
common execution �ow is compiled into an execution trace. Then, runtime checks
(guards) are inserted to check whether control �ow is still valid for the trace or
not. They execute the runtime checks (guards) in parallel with the main execu-
tion �ow (trace), and only have a single main execution �ow.

In [66], a lightweight speculation mechanism is proposed that focuses on loop-
like constructs in JavaScript. A loop is marked for speculation if it contains
a su�cient workload. As this code used the trace feature of Spidermonkey, a
selective form of speculation is employed. They found that they were able to make
execution 2.8 times faster for well known JavaScript benchmarks. Unfortunately,
large loop structures are rare in real web applications [56].

Mickens et al. [68] indicate an event-based speculation mechanism which is
deployed as a JavaScript library called Crom. Crom clones certain regions of the
JavaScript code, which then are executed speculatively. Unlike our approach,
their main goal is to enhance the responsiveness, while our main goal is to reduce
the JavaScript execution time by dynamically extracting parallelism.

In [63] we presented a method-level TLS implementation in Squirrel�sh/We-
bKit with an on/o� speculation principle, where a single misspeculation turns o�
speculation for that function.

In this paper, we propose three heuristics for dynamically adapt the specula-
tion: a 2-bit heuristic, an exponential heuristic, and a combination of these two.
We evaluate the heuristics on 15 popular web applications. Our results show
that the combined heuristic is able to both increase the number of successful
speculations and decrease the execution time.

6.2 TLS Implementation for JavaScript

We have implemented method-level TLS in the Squirrel�sh JavaScript engine [108].
The speculation is done on JavaScript functions, including return value predic-
tion, all data con�icts are detected and rollbacks are done when con�icts arise,
and nested speculation is supported. The implementation and the performance
of our TLS system are described in [63]. Below is a brief overview of our baseline
TLS implementation.

The JavaScript execution in Squirrel�sh is divided into two stages; �rst the
JavaScript code is compiled into bytecode instructions, and then the bytecode
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instructions are executed. Initially, we initialize a counter realtime to 0. For
each executed bytecode instruction, the value of realtime is increased by 1. We
give the interpreter a unique id (p_realtime) (initially this will be p_0).

During execution we might encounter the bytecode instruction that indicates
the start of a function call. We extract the realtime value and the id of the
thread that makes this call, e.g., p_0220 (p_0 calls a function after 220 byte-
code instructions). We denote the value of the position of this function call
as function_order, which emulates the sequential time in our TLS program
(Fig. 6.1). We check if this function previously has been speculated by looking
up the value of previous[function_order]. previous is a vector where each entry
is organized by the function_order.

If the entry is 1, then the function has been speculated unsuccessfully. If the
value is 0, then it has not been speculated or has been successfully speculated,
and we call this position a fork point.

Figure 6.1: The JavaScript program P0 performs 3 function calls, P01, P02, and
P03, and P01 performs two function calls, P011 and P012. Thus, we have created a
speculation tree. If we traverse this tree from left to right, we get the same function
call order as in a sequential execution, i.e., P0, P01, P011, P012, P02, and �nally P03.
We denote this order as function_order.

If the position of the function call is a fork point, we do the following; we
set the position of the function call's previous[function_order] = 1. We save
the state which contains the list of previously modi�ed global values, the list of
states from each thread, the content of the register, and the content of previous.

We then create a new thread with a unique id. We copy the value of realtime
from its parent and modify the instruction pointer of the parent thread such
it points to the "end of function call" bytecode instead of the position of the
"function call" bytecode instruction. In other words, the parent thread skips the
function call and continues to execute speculatively after the function call.
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Now we have two concurrent threads, and this process is repeated each time
a suitable speculation candidate is encountered, thereby supporting nested spec-
ulation. If there is a con�ict between two global variables, an incorrect return
value prediction, or a write to the DOM tree we perform a rollback to the point
where the speculation started.

6.3 Heuristics

In [63], we demonstrated large execution time improvements using TLS for web
applications. However, when a misspeculation occurred we never re-speculated
on that function again (baseline).

In Fig. 6.2 we present three speculation heuristics, that then are evaluated on
a set of web applications (Table 6.1); a 2-bit heuristic, an exponential heuristic,
and a combination of these two heuristics.

Figure 6.2: The three heuristics; 2-bit, exponential, and the combination of the two.
In the 2-bit heuristic, speculation on a function stops after two misspeculations in a
row. In the exponential, the time between new speculation attempts doubles for each
misspeculation on a function. When we combine both, we initially use the 2-bit heuristic,
but after two misspeculations we switch to use the exponential heuristic.
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6.3.1 2-bit heuristic

In the 2-bit heuristic (Fig. 6.2), when speculation creates rollbacks 2 times in a
row on the same function, we never speculate on that function again. This could
either lead to successfully speculate on a certain function, or an increased number
of misspeculations.

6.3.2 Exponential heuristic

In the exponential heuristic, we associate the values v = 0 and a = 0, where
a represents the number of misspeculations, with each potentially speculative
function. If v = 0 we try to speculate. If speculation fails, we increase a by
1 and set v = 2a. The next time we encounter this function, v > 0 and we
do not speculate and also reduce v by 1. As we progress and the number of
misspeculations increases, the value of v will increase which increases the time
until we try to re-speculate on this function again. The purpose of the heuristic
is to gradually decrease the probability of speculation for functions with many
misspeculations.

Figure 6.3: The speedup of the three heuristics, relative to the the baseline

6.3.3 Combined 2-bit and exponential heuristic

Instead of stop speculating after two failures in a row, like we do in the 2-bit
heuristic, we continue with the exponential heuristic. This means that when we
speculate enough and have enough misspeculations, it would essentially become
the 2-bit heuristic. However, unlike the 2-bit heuristic, this allows us to re-
speculate again after a number of subsequent speculation attempts.
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Table 6.1: The web applications used in the experiments.

Application Description

Google Search engine
Facebook Social network
YouTube Online video service
Wikipedia Online community driven encyclopedia
Blogspot Blogging social network
MSN Community service from Microsoft
LinkedIn Professional social network
Amazon Online book store
Wordpress Framework behind blogs
Ebay Online auction and shopping site
Bing Search engine from Microsoft
Imdb Online movie database
Myspace Social network
BBC News paper for BBC
Gmail Online email client from Google

6.4 Experimental Methodology

We have selected 15 web applications from the Alexa list of most visited web sites,
as shown in Table 6.1. To enhance reproducibility, we use the AutoIt scripting
environment to automatically execute the various use-cases in a controlled fash-
ion. To validate the correctness of our TLS implementation we have compared
the committed bytecode instructions, the return values, and all written data val-
ues in our TLS implementation with the sequential execution trace. The full
methodology is described in [56].

Our experiments are executed on a system running Ubuntu 10.04 equipped
with 2 quad core processors, i.e., in total 8 cores, and 16 GB main memory. We
have measured the JavaScript execution time in the JavaScript engine.

6.5 Experimental Results

Fig. 6.3 shows the speedup of the heuristics normalized to the baseline's speedup.
It is up to 36% faster than the baseline and the combined heuristic is faster
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than the baseline for 12 out of 15 cases. Comparing the speedup for the three
heuristics, we observe that the combined heuristic is faster than the 2-bit and the
exponential heuristic for 8 of the use cases. Fig. 6.6 shows the relative number
of rollbacks and speculations. We see that the relation between rollbacks and
speculations is much lower for the combined heuristics, than for the baseline, the
2-bit and the exponential heuristic.

For LinkedIn, Amazon, and Facebook the heuristics result in longer execution
times than the baseline TLS. For Facebook we �nd that 43% of all function calls
are regular functions calls, while YouTube has none. Regular JavaScript [61] func-
tion calls are in web applications more prone to misspeculations than anonymous
function calls since anonymous functions often are events. With a larger number
of anonymous function calls, TLS is suitable to speedup JavaScript execution in
web applications. Gmail and Myspace are 5% and 1% faster with the 2-bit than
with the combined heuristic. In Figure 6.4 the 2-bit has a higher maximum num-
ber of threads than the combined heuristic. This indicates that even though the
relationship between rollbacks and speculations is lower for the combined than
for the 2-bit heuristic (Figure 6.6), the 2-bit heuristic allows us to extract most
threads without rollbacks, which again improves the execution time.

In Fig 6.4, 13 out of the 15 uses cases have a lower maximum number of
threads than the baseline. The number of threads are lower or similar for the
combined heuristic in comparison to the 2-bit and the exponential heuristics.
Together with the lower number of speculations relative to rollbacks in Fig 6.6,
this indicate that we are able to speculatively execute function calls for a longer
time with the combined heuristic than for the 2-bit, the exponential heuristic and
the baseline. The e�ect is that the probability of a rollback decreases as we re-
speculate on JavaScript function calls. Further the number bytecode instructions
that have to be re-executed on rollbacks decreases compared to the 2-bit, the
exponential, and the baseline. This indicates that the nested nature of our TLS
implementation allows us to gradually choose to respeculate on the right function
calls, and that the number of threads that execute is di�erent after a rollback.

There are two exceptions, i.e., blogspot and linkedin. Normally, a large number
of threads are useful in order to increase the speedup. However when there is a
large number of threads created from regular functions, the number of bytecode
instructions that needs to be re-executed increases on a rollback. In these two
cases, the number of bytecode instructions increases to the point where we were
unable to speedup the execution over the baseline. bbc and google is faster with
the exponential than the combination, since they have a low speculation depth,
not taking advantage of nested speculation.

99



In Fig. 6.5 we show the maximum memory usage for the heuristics relative
to the baseline. As in Fig. 6.4, we see that the combined heuristic allows the
majority of the threads to execute for a longer period of time. Therefore we are
making a lower number of speculations, and thereby reduce the memory with up
to 53% (ebay).

Figure 6.4: The maximum number of threads for 2-bit, exponential and the combined
heuristic relative to the maximum number of threads for the baseline (i.e., when no
heuristic is used).

6.6 Conclusion

We have shown in previous work [63] that Thread-level speculation consistently
improves the JavaScript performance for a selection of web applications, which
just-in-time compilation failed to do. In this paper, we present three heuristics
to dynamically adjust the aggressiveness of the speculation. We evaluated them
using use-cases for 15 popular web applications. Our results indicate that a
combined heuristic, based on a 2-bit and an exponential, has the potential to both
reduce the execution time and also increase the number of successful speculations.
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Figure 6.5: The maximum amount of memory used by the heuristics relative to the
baseline.

Figure 6.6: The relation between rollbacks and speculations when using the baseline,
the 2-bit heuristic, the exponential heuristic, and the combination of the two heuristics.
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Chapter 7
Paper VI

The E�ects of Parameter Tuning in Software Thread-Level
Speculation in JavaScript Engines

Jan Kasper Martinsen, Håkan Grahn, and Anders Isberg

Submitted to journal for publication

7.1 Introduction

JavaScript is a dynamically typed, object-based scripting language with run-time
evaluation, where execution is done in a JavaScript engine [30, 108, 72]. One use
of JavaScript is to add interactivity to web applications. Several optimization
techniques have been suggested to decrease the execution time, e.g., just-in-time
compilation (JIT) [30]. However, the decrease in execution time has been mea-
sured on a set of benchmarks, which are unrepresentative for JavaScript execution
in web applications [56, 84, 89]. One result of this is that JIT decreases the ex-
ecution time for benchmarks, while it often increases the JavaScript execution
time in popular web applications [58, 63].

JavaScript is a sequential programming language and cannot take advantage
of multicore processors to decrease the execution time. It is possible to take
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advantage of multicore in web applications through Web Workers [104]. However,
Web Workers is intended for improving the responsiveness of web applications,
rather than decreasing the execution time. Fortuna et al. [25] have shown that
there exists a signi�cant parallelism potential in many web applications with an
estimated speed up of up to 45 times.

To hide the details of the parallel hardware, one approach is to dynamically
extract parallelism from a sequential program using Thread-Level Speculation
(TLS) [91]. The performance potential of TLS has been shown for applications
with static loops, statically typed languages, and in Java bytecode environments,
and lately for the JavaScript SpiderMonkey engine on a series of well-known
benchmarks [66] and with speculative execution [68].

In [55], we use TLS in the Rhino JavaScript engine and evaluated it on the
V8 JavaScript benchmarks. In [67] the parallelization is extracted with a light
weight speculation mechanism.

We extended our work in [63] and implemented TLS in the Squirrel�sh JavaScript
engine which is part of WebKit [108]and evaluated it on a number of web applica-
tions. However, even if we were able to decrease the execution time signi�cantly;
our approach had a high memory overhead.

In this study, we evaluate the e�ects of adjusting the amount of available
memory, the maximum number of threads, and the speculation depth. We im-
plement the limitations in the Squirrel�sh engine and evaluate them on 15 web
applications. We measure the e�ects of the adjustment on the execution time,
memory usage, number of threads, speculation depth, number of speculations
and the number of rollbacks.

Our results show that we can decrease the execution time and reduce the
memory overhead by tuning these parameters.

Our main contributions are:

• The e�ects of limiting the execution resources for a Thread-Level Specula-
tion scheme for a JavaScript engine.

• We �nd that 32�128 MB of memory, 16 threads, and a speculation depth
of 4�16 is enough to reach most of the performance increase for the studied
web applications.

• Nested speculation is necessary in order to achieve a high TLS performance
for web applications.
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This paper is organized as follows: In Section 7.2, we introduce JavaScript,
web applications, and Thread-Level Speculation. In Section 7.3 we present our
implementation of TLS and a comparisons with other JavaScript engines and
in Section 7.4, we present the experimental methodology, and the studied web
applications. Our experimental results are presented in Section 7.5, in Section 7.6
we discuss our �ndings and in Section 7.7 we conclude our �ndings.

7.2 Background

7.2.1 JavaScript

JavaScript [37] is a dynamically typed, object-based scripting language with run-
time evaluation used to add interactivity in web applications. The execution is
done in a JavaScript engine. JavaScript has a syntax similar to C and Java,
while it o�ers features such as closures and anonymous functions often found in
functional programming languages such as Haskell.

The performance of popular JavaScript engines such as Google's V8 en-
gine [30], WebKit's Squirrel�sh [108], and Mozilla's SpiderMonkey and Trace-
Monkey [72] has increased, reaching a higher single-thread performance for a
set of benchmarks. However the results from these benchmarks are mislead-
ing [56, 84, 89] and optimizing towards the characteristics of the benchmarks
increases the execution time for real-life web applications [58].

7.2.2 Web Applications

In web applications the client side computations are executed in a JavaScript
engine and these functionalities are often de�ned as events. These events are
de�ned as JavaScript functions that are executed for instance when the user
clicks a mouse button, when a web page loads for the �rst time or certain tasks
that are executed between time intervals. In contrast to JavaScript alone, web
applications might manipulate parts of the web application that are not accessible
from a JavaScript engine alone. The functionality is executed in a JavaScript
engine, but the program �ow is part of the web application. A key concept in
web applications is the Document Object Model (DOM) that de�nes each element
in the web application. The programmer can modify and create content in the
web applications through the DOM tree with JavaScript.
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Studies [56, 84, 89] have show that web applications use dynamic programming
language features extensively. Parts of the program are de�ned at runtime, and
types and extensions of objects are re-de�ned during runtime.

7.2.3 Thread-Level Speculation Principles

TLS aims to dynamically extract parallelism from a sequential program. This can
be done both in hardware, e.g., [14, 85, 98], and software, e.g., [13, 41, 78, 81, 91].
Two main approaches exist: loop-level parallelism and method-level speculation.
In this paper we use method-level speculation.

In method-level speculation, we execute function calls as threads and we must
correctly predict the return values when we speculate as well as detect the writes
and reads that cause the speculative program to violate the sequential semantics.
The last two are typically detected when the values associated with two function
calls are committed back to their parent thread. Between two consecutive threads
we can have three types of data dependencies: Read-After-Write (RAW), Write-
After-Read (WAR), andWrite-After-Write (WAW). A TLS implementation must
be able to detect these dependencies during runtime using information about read
and write addresses. A key design parameter for a TLS system is the precision
of at what granularity it can detect data dependency violations.

When a data dependency violation is detected, the execution must be aborted
and rolled back to a safe point in the execution. Thus, all TLS systems need a
rollback mechanism. In order to be able to do rollbacks, we need to store both
speculative updates of data as well as the original data values. As a result, the
book-keeping related to this functionality results in both memory overhead as
well as run-time overhead. In order for TLS systems to be e�cient, the number
of rollbacks should be low.

A key design parameter for a TLS system is the data structures used to
track and detect data dependence violations. The more precise tracking of data
dependencies, the more memory overhead is required. Unfortunately, one e�ect of
imprecise dependence detection is the risk of a false-positive violation, i.e., when
a dependence violation is detected when no actual (true) dependence violation
is present. As a result, unnecessary rollbacks need to be done, which decreases
the execution time. TLS implementations can di�er depending on whether they
update data speculatively 'in-place', i.e., moving the old value to a bu�er and
writing the new value directly, or in a special speculation bu�er.
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7.2.4 Software-Based Thread-Level Speculation

In this section we review some of the most important software-based TLS pro-
posals.

Bruening et al. [13] proposed a software-based TLS system that targets loops
where the memory references are stride-predictable. This is one of the �rst tech-
niques that is applicable to while-loops where the loop exit condition is unknown
until the last iteration. They evaluate their technique on both dense and sparse
matrix applications, as well as on linked-list traversals. The results show speed-
ups of up to almost �ve on 8 processors.

Rundberg and Stenström [91] proposed a TLS implementation that resembles
the behavior of a hardware-based TLS system. The main advantage with their
approach is that it tracks data dependencies precisely, thereby minimizing the
number of unnecessary rollbacks caused by false-positive violations. The down-
side is the memory overhead. They show a speed up of up to 10 times on 16
processors for three applications from the Perfect Club Benchmarks [8].

Kazi and Lilja developed the course-grained thread pipelining model [41] ex-
ploiting coarse-grained parallelism. They suggest to pipeline the concurrent ex-
ecution of loop iterations speculatively, using run-time dependence checking. In
their evaluation they used four C and Fortran applications (two were from the
Perfect Club Benchmarks [8]). On an 8-processor machine they achieved speed-
ups of between 5 and 7. They later extended their approach to also support Java
programs [40].

Bhowmik and Franklin [9] developed a compiler framework for extracting
parallel threads from a sequential program for execution on a TLS system. They
support both speculative and non-speculative threads, and out-of-order thread
spawning. Further, their work addresses both loop as well as non-loop parallelism.
Their results from 12 applications taken from three benchmark suites (SPEC
CPU95, SPEC CPU2000, and Olden) show speed-ups between 1.64 and 5.77 on
6 processors.

Cintra and Llanos [17] present a software-based TLS system that specula-
tively executes loop iterations in parallel within a sliding window. As a result,
given a window size of W at most W loop iterations/threads can execute in
parallel at the same time. By using optimized data structures, scheduling mech-
anisms, and synchronization policies they manage to reach in average 71% of
the performance of hand-parallelized code for six applications taken from various
benchmark suites [96, 8].
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Chen and Olukotun shows [15, 16] how method-level parallelism can be ex-
ploited using speculative techniques. The idea is to speculatively execute method
calls in parallel with code after the method call. Their techniques are imple-
mented in the Java runtime parallelizing machine (Jrpm). On four processors,
their results show speed-ups of 3�4, 2�3, and 1.5�2.5 for �oating point applica-
tions, multimedia applications, and integer applications, respectively.

Picket and Verbrugge [80, 81] developed SableSpMT.Their solution is im-
plemented in a Java Virtual Machine, called SableVM, and thus works at the
bytecode level. They obtain at most a two-fold speed-up on a 4-way multicore
processor.

Oancea et al. [78] present a TLS proposal that supports in-place updates.
They have a low memory overhead with a constant instruction overhead, at the
price of lower precision in the dependence violation detection mechanism. How-
ever, the scalability of their approach is superior due to the fact that they avoid
serial commits of speculative values. The results show that their TLS approach
reaches in average 77% of the speed-up of hand-parallelized, non-speculative ver-
sions of the programs.

A study by Prabhu and Olukotun [82] analyzed what types of thread-level
parallelism that can be exploited in the SPEC CPU2000 Benchmarks [96]. They
identi�ed a number of useful transformations, e.g., speculative pipelining, loop
chunking/slicing, and complex value prediction.

A study by Hertzberg and Olukotun [34] has a runtime system that decreases
the execution time, and where idle cores are used to analyze potentially forthcom-
ing speculations. It reportedly decreases the execution time of SPEC CPU2000
Benchmarks by 49%.

A study by Tian et al. [102] presents a novel Copy or Discard (CorD) execution
model to e�ciently support software speculation on multicore processors using
pro�led C code transformation with LLVM [44] to support parallel execution.
The state of speculative parallel threads is maintained separately from the non-
speculative computation state. The computation results from parallel threads
are committed if the speculation succeeds; otherwise, they are discarded. They
achieve speed ups ranging from 3.7 to 7.8 on a server with two Intel Xeon quad-
core processors.

Renau et al. [86] presents three mechanisms; Splitting Timestamp Intervals,
Immediate Successor List, and Dynamic Task Merging for out-of-order spawning
in TLS. These techniques are implemented into their custom compiler, and on
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a quad core computer they are able to have an average speed up of 1.30 for the
SPECint 2000 applications.

Mehrara and Mahlke [67] show how to utilize multicore systems in JavaScript
engines. However, their study has a di�erent approach as well as a di�erent target
than we have. It targets trace-based JIT-compiled JavaScript code, where the
most common execution �ow is compiled into an execution trace. Then, runtime
checks (guards) are inserted to check whether control �ow etc. is still valid for
the trace. They execute the runtime checks in parallel with the main execution
�ow (trace), and only have one single main execution �ow. Our approach is to
execute the main execution �ow in parallel.

In [66] they introduce a lightweight speculation mechanism that focuses on
loop-like constructs in JavaScript, and if the loop contains a su�cient workload,
it is marked for speculation. As this code used the trace features of Spidermon-
key, a selective form of speculation is employed. They found that they were
able to make speculation 2.8 times faster for well known JavaScript benchmarks.
Unfortunately, large loop structures are rare in real web applications as shown
in [58].

Mickens et al. [68] suggest an event-based speculation mechanism which is
deployed as a JavaScript library called Crom. However, unlike our approach,
their main goal is to enhance the responsiveness, while our main goal is to reduce
the JavaScript execution time by dynamically extracting parallelism.

In summary, there is a signi�cant amount of research done on software-based
Thread-Level Speculation. However, we have not found any study that thor-
oughly evaluates the e�ects of adjusting the amount of memory, the number of
threads, or the depth of speculation, for web applications.

7.3 Thread-Level Speculation Implementation for

JavaScript

In this section, we describe our TLS implementation [63].

7.3.1 Speculation mechanism

Execution in Squirrel�sh is divided into two stages, �rst the JavaScript code
is compiled into bytecode instructions, then the bytecode instructions are exe-
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cuted. We extract two things: The compiled bytecode instructions which are to
be executed, and the execution trace of a sequential execution of the bytecode in-
structions. We later use the sequential execution trace to validate the correctness
of the speculative execution o�-line.

Initially we initialize a counter realtime to 0. For each executed bytecode
instruction, the value of realtime is increased by 1. We give the interpreter a
unique id (p_realtime) (initially this will be p_0).

During execution we might encounter the bytecode instruction that indicates
the start of a function call. We extract the realtime value and the id of the
threaded interpreter that makes this call, e.g., p_0220 (a function is called after
220 bytecode instructions from p_0). We denote the value of the position of
this function call as function_order, which emulates the sequential time in our
TLS program (Fig. 7.1). This is possible in JavaScript in web applications since
we know that there is going to be a very large number of function calls. We
check if this function previously has been speculated by looking up the value
of previous[function_order]. previous is a vector where each element is indexed
by the function_order. If the entry is 1, then the function has been speculated
unsuccessfully. If the value is 0, then it has not been speculated or has been
successfully speculated, and we call this position a fork point.

If the position of the function call is a fork point, we do the following; we
set the position of the function call's previous[function_order] = 1. We save the
state which contains the list of previously modi�ed global values, the list of states
from each thread, the content of the register in the JavaScript engine, and the
content of previous.

We then create a new thread which contains an interpreter with an unique
id which contains a new Squirrel�sh engine. We copy the value of realtime from
its parent and modify the state of the parent such that the current instruction is
changed from the position of the "function call" bytecode instruction to the posi-
tion of the associated "end of function call" bytecode instruction. In other words,
the parent thread ships the function call and continues to execute speculatively
after the function call.

Now we have two interpreters running as concurrent threads, and this process
is repeated each time a suitable candidate for speculation is encountered, thereby
allowing nested speculation. If there is a con�ict between two global variables,
an incorrect return value prediction or writing to the DOM tree, we perform a
rollback to the point where the speculation started.
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Figure 7.1: We use the order that the functions are called in, to determine the
order in which the program would have been sequentially executed. This works in
JavaScript in a web applications setting, as there are multiple function calls. For
instance, in a simpli�ed example the JavaScript function f0, performs 3 function
calls, f01, f02 and f03. f01 performs two function calls, f011 and f012. Thus, we
have created a speculation tree from the function calls. If we traverse this tree
from left to right, we get an order in which the functions are called, equal to the
order in which the functions would be sequentially called, in order to uphold the
sequential semantics during execution with TLS. More speci�c: f0 at time p_1,
f01 at time p_2, f011 at time p_3, f012 at time p_4, f02 at time p_5, and f03
at time p_6. We denote how each function is ordered as function_order.

Our return value prediction predicts the return values in a last predicted value
manner [36] from a function with the same name (if a name is present). This is a
simple heuristic for return value prediction, but as we mentioned earlier, function
calls in JavaScript are often anonymous, use eval calls extensively, or these calls
are events started from the web applications. These functions, do not return any
value. Therefore does a heuristic such as the last returned value works fairly well
for JavaScript execution in web applications.

In Fig. 7.2, we outline the process of speculation and a subsequent rollback
to restore the execution to a safe state, i.e., commit or where the speculation
started.
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Figure 7.2: In (a), at time 1 in thread 0 we write the value 7 to the global value x. At
time 2 in thread 0 we encounter a function call which we speculate on and this function
call becomes thread 1. At time 3, thread 0 reads 7 from the global variable x. At time
4 thread 1 reads the same variable. At time 5 the function which is thread 1, returns
and the global variables are committed back to thread 0. In (b) we write 7 to x in
thread 0 at time 1. At time 2 thread 0 makes a function call that becomes thread 1.
At time 3 thread 0 reads the value 7 from global variable x. At time 4 thread 1 writes
5 from the variable x. In the sequential case, the function called at time 2, the value
of variable x would have been 5 at time 2 (i.e., when the function returns), and thread

0 would read 5 from x after the function has returned. This means that thread 0 is
squashed, and when we commit the values at time 5 we can no longer ensure sequential
semantics. Therefore at time 6, we need to restore the JavaScript execution state to the
point before we speculated on the function call and do not speculate on this function
call again.

7.3.2 Data dependence violation detection

For correct speculative execution, we check for write and read con�icts between
global variables, object property id names and unsuccessful return value predic-
tions of function calls. Each global variable has an unique identi�cation, uid,
which is either the index of the global variable or the name of the id in the object
property.

When we encounter a read or write bytecode instruction, we check the global
list variable_modi�cation. This list contains previous reads and writes for all
uids sorted per uid. If the uid is not in the list, we lock variable_modi�cation,
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insert uid into variable_modi�cation, create a sublist for reads and writes to that
uid, and insert the type of bytecode instruction, realtime, and function_order as
the �rst element of the sublist. If there were no con�icts between the current
executed bytecode and previous reads and writes of the uid, we insert an element
to the head of the sublist for this uid with the type of bytecode, realtime, and
function_order.

Each time we encounter a read or write access to an uid, we evaluate the
following cases in variable_modi�cation.

(i) The current operation is a read, and there is a previous read to the same
uid. In this case, the order in which the uid is read does not matter.

(ii) The current operation is a read, and there is a previous write to the same
uid. Therefore, we check the realtime and the function_order for the cur-
rent read and the previous write. If a read occurred such that:

current function_order>previous function_order

and

current realtime<previous realtime

then the execution order of the program is no longer correct and we must
do a rollback. Likewise, the same applies if the current operation is a write,
and there is a previous read to the same uid. In this case, we check the
realtime and the function_order from the current write and the previous
read. So, if:

current function_order>previous function_order

and

current realtime<previous realtime

then the execution order of the program is no longer correct and we must
do a rollback.

(iii) The current operation is a write, and there is a previous write to the same
uid. We need to do a rollback if the current write happens before the
previous write in realtime and they have the other order in function_order,
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or if the order of the write happens after the previous write in realtime but
before the previous write in function_order.

7.3.3 Rollback

Cases (ii) and (iii) force us to do a rollback for program correctness globally,
further we also do rollbacks if we write to the DOM tree. After a rollback, the
program is re-executed from a point before the function was speculated. If the
function where the rollback occurs is nested, we stop the JavaScript interpretion
of its child threads, and place the associated threads back in a thread pool for
later reuse. At this point information for relevant threads are extracted, e.g.,
previous at this point, the number of associated threads at this point, the values
of the associated registers in the register based JavaScript engine, the values
of the global variables and object property ids are restored for the associated
threads, the value of previous (with the index of this failed speculation set to 1),
and the variable con�icts in variable_modi�cation.

Even though we have a set of threads that are supposed to be active, there
might be threads after the rollback that is not associated with the current state
of the TLS system. Therefore, we recursively go through the threads and their
child threads that are now part of the active state. The resulting list contains
the threads which are necessary in the current state of execution. The remaining
interpreters (running as threads), which are not necessary for the current state
of the execution are stopped, and returned to the thread pool for later reuse.

7.3.4 Commit

When a speculative thread reaches the end of execution, its modi�cations of
global variables and object property ids need to be committed back to its parent
thread. The commit cannot be completed before child threads from this thread
have returned and have committed their values back to their parent thread. If
the associated JavaScript function has a return value which we fail to predict cor-
rectly, or if executing the function causes violations to the sequential semantics,
we have to rollback.
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Table 7.1: The web applications used in the experiments.

Application Description

Google Search engine
Facebook Social network
YouTube Online video service
Wikipedia Online community driven encyclopedia
Blogspot Blogging social network
MSN Community service from Microsoft
LinkedIn Professional social network
Amazon Online book store
Wordpress Framework behind blogs
Ebay Online auction and shopping site
Bing Search engine from Microsoft
Imdb Online movie database
Myspace Social network
BBC News paper for BBC
Gmail Online email client from Google

7.4 Experimental Methodology

We have extended our TLS implementation with three parameters to control
the maximum memory, the maximum number of concurrent threads and the
maximum depth in nested speculation. When we encounter a JavaScript function
suitable for speculation, we �rst check these parameters. If they are below the
speci�ed limit, we speculatively execute the function. If a parameter is above the
limit we executed the function sequentially.

7.4.1 Web applications

We have selected 15 web applications (Table 7.4.1) from the Alexa list [4]. We
selected di�erent types of web applications, such as search engines (Google and
Bing) and various types of social networks (Facebook and Linkedin).

We have based our use cases on personal usage (such as searching in Amazon
for one of the authors of this paper). In addition, we have tried to reduce the
mouse interaction, as the screen size and navigation devices vary across di�erent
platforms. This way our results could be applicable on many types of devices.

115



The JavaScript executed in web applications is fundamentally di�erent from
what is executed in the JavaScript benchmarks e.g., with multiple calls to events
which often are de�ned as anonymous functions [56]. The number of calls varies
from 12 to over 10000, but the execution characteristics are the same. These
events are allowed to run for a prede�ned time.

To enhance reproducibility and to provide a deterministic and reproducible
behavior we automatically execute the use cases [11]. The methodology for these
experiments is described in [56]

To validate the correctness of our TLS implementation, we have compared
the executed bytecode instructions with the committed bytecode instructions in
our TLS implementation and compared the return values and the written values
against the sequential execution trace.

7.4.2 JavaScript functions in web applications

Figure 7.3: The execution time of TLS in comparison to Squirrel�sh and V8, both with
just-in-time compilation enabled [63] normalized to the execution time of Squirrel�sh
without JIT.

We base our experiments on the Squirrel�sh JavaScript engine, where just-in-
time (JIT) compilation is optional. We use the interpretive mode, since Fig. 7.3
shows that JIT compilation increases the execution time for 11 out of 15 use cases
for Squirrel�sh (when JIT is enabled) and 8 out of 15 for Google's JavaScript
engine V8.
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JIT compilation in Squirrel�sh and V8 is measured on a set of benchmarks,
and it has been shown [56, 84, 89] that these are unrepresentative for the workload
in web applications. Benchmarks are similar to well-known benchmarks in other
�elds with a large number of loops. Since there is a limit (i.e., 10 seconds in
Firefox and 5 second for Internet Explorer) to how long a JavaScript call can
execute, the problem sizes that are computed by the benchmarks are arti�cially
small. If we compare the JavaScript execution in benchmarks to the JavaScript
execution in web applications, we se that most JavaScript calls are events from
the web application, and speci�c JavaScript features such as eval and anonymous
functions are extensively used. This leads to little reuse of already compiled code
which is an importan feature of JIT. Therefore JIT compilation speeds up the
benchmarks, while it slows down web applications to a point where it is slower
with JIT compilation enabled [63].

These arguments are not against JIT, but that JIT is optimized towards the
behavior of unrepresentative benchmarks. This leads to increased execution time
in web applications.

Figure 7.4: The mean length of the bytecode instructions executed in functions (upper)
and the number of anonymous function calls, number of regular function calls and unique
function names for the regular functions (lower).

Fig. 7.4, shows that the number of JavaScript function calls and their size in
terms of executed bytecode instructions in web applications varies (the mean max
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and min of the size of executed functions is 68168.75 and 2.19 bytecode instruc-
tions over an average of 15574.53 function calls). We can understand this from a
nested speculation point of view. Functions at a low depth contain many of the
proceeding function calls (i.e., Wordpress makes almost 80% of the functions call
at depth 1 or 2), and as the depth increases the number of executed bytecode in-
structions decreases. In the �gure below, we see that the most executed functions
are anonymous function calls (i.e., for instance youtube only makes anonymous
function calls). This shows that JavaScript in web applications is event driven.
We also see that the functions that are not anonymous are seldom repeatedly
called (i.e., for msn on average there are 104.64 distinct function calls (out of 39
function names) and 15609 anonymous function calls)

As an argument against JIT in these cases, each function call gets compiled,
however most of the compiled code is not going to be re-executed and what is
getting reused is very short. Therefore it is not going to be bene�cial to execute
it as native code (even if we optimize the native code).
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Figure 7.5: The number of nested function calls up to 7 levels for Youtube, Facebook,
Gmail and Wordpress . We see as the depth of the nested function calls increases, the
number of function calls decreases. We also see that the largest number of function calls
is often not found at depth 1, but rather at depth 2 and depth 3. Each line represents a
function call, and we can see by tracing the lines that some of the function calls spawn
many new function calls. (For instance such as the number of function calls between
depth 2 and depth 3 in Facebook). The rightmost number at each depth (vertical y-axis)
indicates the number of function calls for each depth. From the Figures, the number of
function calls is the largest at a higher depth than 1.

7.4.3 Nested function calls

Initially the depth of a function is 1. If this function makes a call to a function,
the depth of the new function call will be 2, and if this function makes a function
call, it will have depth 3, etc.

Fig. 7.5 shows that the number of functions start to decrease after depth 3.
The number of JavaScript functions calls decreases after depth 3, since calls to
events in web applications are only allowed to execute for a limited time (i.e.,
for youtube nearly 90% of all the functions calls are made before depth 4). Most
web browsers report that the script is unresponsive if the JavaScript executes too
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long. As the execution progress, so does the depth of function calls, therefore,
JavaScript functions with a high depth do not account for most of the execution
time in web applications.

7.4.4 Testing environment

All experiments are conducted on a system running Ubuntu 10.04 equipped with
2 quadcore, Xeon R© 2Ghz processors with 4 MB cache each, i.e., a total of 8 cores,
and 16 GB main memory. We have measured the execution time of the JavaScript
execution performed in the JavaScript engine. There are other factors, I/O and
css processing which a�ect the execution time of a web application. However,
since one of the initial arguments is the di�erence between the JavaScript ex-
ecution behavior of benchmarks and the JavaScript execution behavior in web
applications, we focus on the JavaScript execution time. We have also disabled
the number of cores to 2 and 4, to see which e�ects this has on the execution
time.

7.5 Experimental Results

In Section 7.5.1 we have limited the memory used for speculation, in Section 7.5.2
we have limited the maximum number of concurrent threads, and in Section 7.5.3
we have limited the speculation depth.

7.5.1 Limiting the memory usage

In Fig. 7.6; (i) the execution time generally decreases with increased memory
usage, and (ii) most of the performance increase is achieved between 32 MB and
128 MB.

Execution time

Up to 128 MB, we get on average a 2× speedup compared to sequential excution
time. With more than 128 MB, 7 out of 15 web applications are unable to further
decrease the execution time.
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Figure 7.6: The speed up when we limit the available memory to 4,8,16,32,64,
128, 256, 512MB and with no restriction on the memory usage. The horizontal
line in the �gure indicates the sequential execution time for comparison average
speed up is 2.52 (excluding the Youtube use case, it is 2.09).

Amazon is 1% faster than the sequential execution time for 4 MB, then the
execution time gradually increases to 64 MB (where it executes 54% slower than
the sequential execution time), before the execution time decreases gradually, up
to when no limitation is set, where it is faster 2% faster than the sequential ex-
ecution time. This is the only use case where TLS could increase the execution
time. Comparing BBC to Amazon, BBC executes 10% more bytecode instruc-
tions (which are the use case where the di�erence in terms of executed bytecodes
are the smallest), but Amazon makes 2× as many function calls as BBC, and
44% of these function calls have a depth of 2. So when we speculate, we could
choose a function at a low depth, and speculate on several function calls from this
function call, and use up all of the memory on that. As we increase the memory
we are allowed to speculate more and deeper, and therefore we are able to �nd
enough speculations to reduce the execution time. The reason for this behavior
is that many of the JavaScript functionalities read information from web-cookies,
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since JavaScript is used to customized the web application to the visiting users
previous behavior.

Fig. 7.6 shows that Youtube executes 1.86× as fast as the next fastest use
cases, wikipedia. In Youtube there is a large number of identical functions running
as events since Fig. 7.4 shows that all the function calls in this use case are
anonymous. These are related to updating and suggesting similar videos to the
one the user is currently watching. In Fig. 7.8 we execute 5.06× as many threads
as the average number of threads for this use case. In Fig. 7.9 the number of
speculations is 1.69× as many as the average number of speculations, but 31%
of the average number of rollbacks.

The execution times of Bing and Wikipedia does not increase with more than
4 MB. The number of functions in these use cases is 5.6% and 0.24% of the
number of functions for the other use cases, which explains why we are unable to
take advantage of more than 4 MB.

These measurement indicates that although TLS requires memory, it is in
many cases su�cient with between 32 MB and 128 MB to double the speed up.

Overhead of saving checkpoint states and committing values

In Fig. 7.7 we have measured the relative execution time of TLS relative to the
sequential execution time. We have measured the time it takes to commit values
and the time it takes to save states when we limit the memory usage to 4, 8, 16,
32, 64, 128, 256 and 512 MB relative to the execution time. Generally, the time it
takes to save checkpoint states increases, while the time it takes to commit values
when a function returns decreases as the memory usage increases. Therefore we
spend less time committing data as the memory increases, but spend more time
saving checkpoint states in case of a rollback. The overhead for saving states
varies between 24% and 1% of the total execution time, and the overhead of
committing values varies between 3% and 0.01%. Thus, the overhead values for
TLS is in general very small.

Since commiting values and saving states usually consist of a low total amount
of the cost of TLS, we have found that what is really expensive is to initialize
the threadpool, especially if the initializtion of new threads is spread out while
executing. We also found that the cost increases with an increasing number of
cores.
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Figure 7.7: The relative improvement in execution time and the overhead of
saving checkpoint states and commiting values.

No. of threads

In Fig. 7.8, 5 of the web applications are able to execute more than 50 threads.
The functions in JavaScript can execute 2.19 bytecode instructions on a function
call. Since we use nested speculation each thread has to wait until the threads it
created returns. Due to the large number of function calls in web applications,
and that functions are quite short; the number of threads running at certain
points in time varies greatly. For instance, for linkedin the average number of
threads executing are 2.64, while the maximum number of threads is 36.

If we reduce the number of cores from 8 to 4, our results indicate that we
need to use 2.3× as much memory to get the same speed up, as when we have
all cores enabled. This indicates that we need more memory to more memory
to create a larger number threads to have the same execution time with a lower
number of cores.

No. of speculations and no. of rollbacks

Fig. 7.9 shows a clear correlation between an increased memory and an increased
number of speculations and an increased number of rollbacks. For instance be-
tween 4MB and an unrestricted amount of memory we get 16.12× as many spec-
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Figure 7.8: The largest number of threads when we limit the available memory to
4, 8, 16, 32, 64, 128, 256, 512MB and with no restriction on the memory usage.

ulations, and 26× as many rollbacks. However comparing the number of specu-
lations and the number of rollbacks, we �nd that few of the speculations result
in a rollback. For example, Imdb makes over 5000 speculations, with less than
150 rollbacks. The behavior of other applications are similar.

Summary

It is su�cient with between 32 MB and 128 MB since this is responsible for 97%
of the performance improvements of TLS. In order to have the lowest possible
execution time it is important to have between 35.6 and 48.3 threads running
simultaneously, between 1267.6 and 3033.3 speculations and between 21.8 and
43.0 rollbacks. If the number of cores decreases, we need to use more memory to
create more threads, and decrease the execution time.
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Figure 7.9: The number of speculations (upper) and the number of rollbacks
(lower) when we limit the memory usage to 4, 8, 16, 32, 64, 128, 256, 512MB and
with no restriction on memory usage.

7.5.2 Limiting the number of threads

Fig. 7.10 shows that the optimal number of threads in order to achieve the lowest
execution time is between 8 and 32 ant that 8 web applications we have the
highest speed up with 16 threads.

Execution time

We divide web application that are faster with TLS into three; (i) when the
execution time increases with an increased number of threads (e.g. Youtube), (ii)
when the execution time decreases with the number of threads, but after a certain
number of threads, the execution time increases (e.g. msn) and �nally, (iii) when
there are spikes in the execution time, i.e., sudden improvements in execution
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Figure 7.10: The speed up when we limit the number of threads to 2, 4, 8, 16,
32, 64, 128 and with no restriction on the maximum number of threads (average
speed up, excluding the Youtube use case is 2.09).

time for a certain number of threads, while the previous and the proceeding ones
are lower (e.g. Facebook).

The execution time decreases for Youtube (i.e.,it executes 3.89× faster with
128 threads than 4 threads). There are 1.69× speculations as the other use
cases, and 32% of the rollbacks. By inspecting the executed bytecode and the
JavaScript code we see that 68% of them have the same JavaScript code, even
though they are anonymous. These are great candidates for being speculatively
executed, many of them are events, and since they are anonymous function calls,
they do not return anything.

If we limit the number of threads to 2 in Facebook, it executes 1.72× faster.
We can understand this from the following; by using two threads, the overhead
is signi�cantly reduced (29% of when we do not limit the number of threads).
In Facebook, we are unable to �nd an increased number of threads executing
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concurrently when going from 32 to 128 threads. In Fig. 7.11 there is a 3.2×
increase between the number of executing threads going from 128 to no restriction
on the number of threads. If we look at the JavaScript execution in Facebook,
there is a large number of executing functions at each depth. We also see that
in Fig. 7.5 the functions are distributed evenly at each depth. For a limited
number of threads, there is a limit to how many functions we can use for nested
speculation. Without such a limit, we are able to execute more functions. This
does not speed up the execution time. The memory usage of Facebook in Fig. 7.16
suggests that the functions are small in terms of number of executed bytecode
instructions, and therefore commit quickly. This enables us to speculate on a
lot of functions, but the increase in speculation due to the depth of function in
Fig. 7.5 limits the gain in execution time (even though the number of available
threads is very high).

For msn the performance increases with 2.86× from 2 threads to 16 threads.
After that, the performance drops to 64% when we do not limit the number
of threads to 16 threads. The drop in execution time occurs for the following
reason; This use case has a large depth, which means a number of speculated
functions are going to wait for the function they speculated to return, before
they can return. This causes the threadpool to create and initialize more threads,
which we showed in the previous section to have a signi�cant cost. If we limit the
number of threads, new threads will not be created by the threadpool at the same
rate, which again reduces this overhead, since if all the threads are occupied, the
function call will be executed sequentially.

For the ones that are slower than sequential execution time, they use between
2 and 8 threads (Amazon is slower for 16 threads). We see in Fig. 7.12 that
even though we are using 2 threads, the number of rollbacks is almost the same
as for 4 threads, while the number of speculations is much higher for 4 than for
2 threads. This shows that the cost of doing a rollback, along with the lack of
speculation using 2 threads makes the execution time slower than the sequential
execution time. We see the contrary in Wikipedia which has no rollbacks, and
therefore the speed up is above the sequential execution time. This suggests that
the number of threads must be higher than 2 in order to take advantage of TLS
to decrease the execution time, which is an argument for nested speculation.

The ability to take advantage of the threads

Fig. 7.11 shows that 13 of the use cases are able to execute 32 threads concurrently
when going from 16 to 32 threads. For 32 to 64, we are often able to use more
than 32 threads, but only 5 use cases are able to use 64 threads. This shows that
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Figure 7.11: The relative increase in the highest number of concurrent threads
increasing the maximum number of threads from 2 to 4, 4 to 8, 8 to 16, 16 to 32,
32 to 64, 64 to 128 and 128 to no limitation.

the real number of threads that we are able to execute concurrently is between 32
and 64. Since we see that for up to 32 threads most use cases are able to double
the highest number of threads by adjusting the maximum number of threads,
there is rarely any point increasing the maximum number of threads beyond 32.
Only Youtube and Wordpress are able to take advantage of a maximum number
of threads over 128. However, their speed up in execution time is negligible for
this number of threads compared to 128 threads. Youtube is 4% faster, while
Wordpress is only able to use a large number of threads, not to improve the
execution time, because as we increase the number of threads, we are usually
able to speculate deeper, however the number of bytecode instructions executed
at a high speculation depth is limited. Therefore, there is a limit to how much
we are able to speed up the execution time even if we are able to execute more
threads.

No. of speculations and rollbacks

Fig. 7.12 shows that the number of speculations increases by 7.92× with an
increasing number of threads. For 12 out of 15 web applications, the number of
speculations does not increase when the maximum number of threads is higher
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than 16. This shows that we are unable to �nd a su�cient number of functions
to execute concurrently.

Figure 7.12: The number of speculations (upper) and the number of rollbacks
(lower) when we limit the maximum number of threads to 2, 4, 8, 16, 32, 64, 128,
and with no restrictions on the number of threads.

From the number of rollbacks there is often an over 3× increase in the number
of rollbacks going from 2 to 8 threads. However, there is often a decrease in
the number of rollbacks as the number of threads increases from 16 up to no
limitation on the number of threads. This pattern is common; �rst the number
of rollbacks increases, then the number of rollbacks gradually decreases as the
number of threads increases. In Fig. 7.12, there is not a clear correlation between
an increased number of speculations and an increased number of rollbacks. This
indicates that a larger number of threads does not necessarily mean a larger
number of rollbacks, In fact, it might mean the opposite, and an increased number
of threads might reduce the number of rollbacks. We get 3.33× the speculations
when we limit the number of threads to 4 compared to when we limit the number
of threads to 2. The signi�cant change in the number of speculations is because
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of the reduction in the number of available threads. In Fig. 7.4 we see that there
are many functions in web applications, but that they are small. Then we could
end up executing many small functions with a limited number of threads, which
would have a marginal e�ect on the execution time. This is the reason why we
need a certain number of threads to improve the execution time. If we reduce the
number of cores on the system (i.e., two or four) we end up using more threads
to have the same execution time as using eight cores.

As we restrict the number of threads, the speculation depth decreases. This
makes us unables us take full advantage of nested speculation. In Fig. 7.12 the
number of speculations increases as the number of threads increases. However,
JavaScript TLS characteristics in web applications also indicate that the number
of bytecode instructions decreases as the depth increases. This shows that as the
depth increases, a large number of functions are able to execute simultaneously,
and that the functions are often able to commit quicker. This reduces the number
of dependencies between speculated functions, which in turn reduces the number
of rollbacks. In addition the number of anonymous functions of JavaScript in
web applications show that there are few return values.

Memory usage

Figure 7.13: The memory usage when we limit the number of threads to 2, 4, 8,
16, 32, 64, 128 and with no restriction on the maximum number of threads.

In Fig. 7.13 we see that as we increase the number of threads we increase
the memory usage by 8.69×. For example, the extremes are msn and Amazon
that use more than 937MB and 1.5GB of memory if we do not limit the maxi-
mum number of threads. One interesting use case is Google, where the memory
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increases with 1024× when we do not restrict the number of threads. However,
these threads are very small in terms of bytecode instructions, but by not re-
stricting the number of threads, we are able to speculate multiple threads in a
nested manner, which in turn increases the memory usage.

The results show that uncritically increasing the number of threads only has
the lowest execution time for 3 out of 15 use cases, and has a high cost in terms of
memory. The optimal number of threads to decrease the execution time seems to
be between 8 and 32. A maximum number of threads set to less than 8 indicates
that we are unable to create a su�cient number of threads (e.g. linkedin).

Summary

We need no more than 32 threads to reduce the execution time. Only 2 use
cases use more than 128 threads. The speed up from 64 threads and upwards is
negligible (i.e., at best 4% faster than when we restrict the number of threads to
64). This shows that there is a potential for extracting a large number of threads
from the JavaScript code in web applications. However, as the number of threads
increases the overhead of having a larger number of threads increases the amount
of memory used for speculation which again reduces the improved execution time
along with a decreasing potential of speculation as the depth increases, since
the functions are so short, we are often able to re-use threads. One interesting
observation is, if we reduce the number of cores, we need to extract more threads
to have the same speedup.

7.5.3 Limiting the speculation depth

The most important observations in this section are; (i) we need to use nested
speculation in order to decrease the execution time and (ii) that a speculation
depth of 16 leads to the best perfromance.

Execution time

Fig. 7.14 shows that nested speculation is necessary to improve the execution
time

With a speculation depth of 2 for Gmail, it is 52% faster than when we do not
limit the speculation depth. In Fig. 7.15 the number of speculations for Gmail

131



Figure 7.14: The speed up when we limit the speculation depth to 2, 4, 8, 16,
32, and with no restriction on the depth (average speed up when we exclude the
Youtube use-case is 2.34).

is the highest for speculation depth 2, and the number of rollbacks is the lowest.
The memory usage is lower for depth 2, which decreases the overhead of TLS.
The behavior in Gmail is caused by much JavaScript functionality (compared to
some of the other use cases) executed when the page loads. Further JavaScript
execution is caused by more user interaction. Our use cases have reduced user
interaction, therefore we would probably see at better e�ect with more user in-
teractions. In Fig. 7.5 most of the functions are found at depth 2 and 3. This
explains the large speed up of Gmail at depth 2.

13 of the 15 use cases have the largest speed up with speculation depths set
to 4, 8, or 16. A speculation deeper than 16 only gives the highest speed up
for Blogspot. This means that the cost of speculating deeper increases and the
potential speed up by being able to speculate decreases.
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No. of speculation and no. of rollbacks

Figure 7.15: The number of speculations (upper) and rollbacks (lower) when we
limit the depth to 2, 4, 8, 16, 32, and with no restriction on the depth.

Fig. 7.15 shows that there is a relationship between an increased speculation
depth and an increased number of speculations, although there is a limit to the
number of speculations we are able to make with a speculation deeper than 8. We
execute fewer and fewer bytecode instructions as the speculation depth increases
,since the number of JavaScript functions decreases as the speculation depth
increases (Fig. 7.5). This means that the potential gain of speculation decreases,
as the number of functions and the size of each function decreases, while we save
more states. Therefore, the speed up rarely increases with a speculation depth
higher than 4.

For a speculation depth over 8, the number of rollbacks decreases as the spec-
ulation depth increases. Since the size of the functions decreases, they commit
back to the parent faster than they would if the size of the function was bigger.
Given that a function speculates on a new function (i.e., nested speculation) it has
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fewer dependencies between itself and the function it speculates on, than there
is between two functions which have the same depth (i.e., for instance function
calls that are made as part of a loop). These functions, rarely return a value, or
at least one that we were unable to predict correctly. This is because many of
these functions read elements in the DOM tree.

Memory usage

In Fig. 7.16 we see that an increased speculation depth means more speculations
(Fig. 7.5), and as a result more checkpoints states must be saved. This means that
we get an increased overhead of saving the checkpoint states, relative to a lower
depth. However there are a lower number of variable checks as the number of
bytecode instructions decreases as the depth increases, and the functions commit
earlier.

Figure 7.16: The memory usage when we limit the speculation depth to 2, 4, 8,
16, 32, and with no limit on the depth.

Summary

Nested speculation speeds up the execution, but any bene�t of speculating deeper
than 16 is rare. Since the size of the function decreases as we speculate deeper,
then the cost of speculation outweighs the potential gain of executing the function
in parallel. One interesting observation is that as the speculation depth increases,
then for 12 out of 15 use cases, the number of rollbacks is reduced.
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7.6 Discussion

As observed in Section 7.5.1 and Section 7.5.3 both Amazon use cases can be
slower than the sequential execution. This is because when we limit the memory,
we are often unable to speculate deep enough, which in turn could slow down the
execution. When we increase the speculation depth, the execution time improves.
In Section 7.5.2 we limit the number of threads, then the same use cases are
often able to �nd the correct threads to speculate on, and initially the overhead
is reduced so we get the highest speed up.

When we increase the depth, we �nd more functions to speculate on; there-
fore we save more checkpoint states. However the size when we speculate with
an increased depth is decreasing compared to a lower depth, as the number of
executed JavaScript bytecode instructions is decreasing. The number of variable
checks for each commit is decreasing; as the depth increases (we see this in terms
of reduction of rollbacks with a high depth). There is a signi�cant increase in
overhead related to commiting going from depth 1 to depth 4, but for higher
depths this overhead is reduced. There is also a signi�cantly higher cost of a
rollback at a low depth, than at a high depth.

To get the bound of improved execution time of JavaScript using TLS in web
applications, we compare our results against the results of [25]. Their average
speed up is 8.9× faster which is clearly faster than the results in this paper, but
they make their argument from a theoretical point of view. Our use cases are
methodologically performed with a focus on reproducibility [56]. This causes our
use cases to have less JavaScript execution, and fewer JavaScript functions to
speculate on.

Our study is based on a real implementation of TLS in a state-of-art JavaScript
engine. We see from the speed up �gures that we could bene�t from a larger num-
ber of cores to increase the speed up for some of the use cases. For the other use
cases, they are limited due to the limited user interaction, and thereby reduced
JavaScript execution. For Youtube, we claim that our TLS solution would further
speed up with a larger number of cores, as the execution time decreases when we
disable the number of cores to 2 or 4, on our 8 core computer, for other use cases
the gain of a larger number of cores is not nearly as high. There is also a cost (in
terms of saving the checkpoint state) for each speculation.
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7.7 Conclusion

We must use nested speculation in order to speed up the execution time. 16
threads, 32MB�128 MB of memory, and a speculation depth between 4�16 levels
often result in the highest speed up

TLS is a suitable technique for increasing the performance in web applications
on devices with multicore processors. From the number of speculations and the
number of threads running concurrently, there is an indication that there is a
potential for a higher speed up with an increased number of cores.
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Chapter 8
Paper VII

Reducing Memory in Software-Based Thread-Level Speculation
for JavaScript Virtual Machine Execution of Web Applications

Jan Kasper Martinsen, Håkan Grahn, Anders Isberg and Henrik
Sundstr®m

Submitted for publication, patent �led

8.1 Introduction

JavaScript is a dynamically typed, object-based scripting language with run-
time evaluation used extensively in web applications, where the execution is
done in a JavaScript engine such as Mozilla Spidermonkey [72]. Google [30]
has suggested Just-in-time compilation (JIT) to decrease the execution time in
JavaScript. However, Google's JavaScript engine V8's decrease in execution time
has been measured on a set of benchmarks, which Ratanaworabhan et al. [84]
show are unrepresentative for real-world web applications. Martinsen et al. [58]
show the dramatic e�ect of this as JIT speeds up the execution of benchmarks,
but often slows down the execution time in popular web applications.
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JavaScript is a sequential scripting language and cannot take advantage of
multicore processors to reduce the execution time. Fortuna et al. [25] show that
there exists a signi�cant potential for parallelism in many web applications with
an estimated speedup of up to 45× compared to a sequential execution.

To hide the details of the underlying parallel hardware, we can dynamically
extract parallelism from a sequential program using Thread-Level Speculation
(TLS). Mehrara et al. show the performance potential of TLS in the SpiderMon-
key JavaScript engine on a series of well-known benchmarks [66] and Martinsen
et al. [63] show this on a number of popular web applications. However, while
prior results show that TLS can signi�cantly speed up the execution time in web
applications, it uses over 1500 MB of memory.

We propose to reduce the memory overhead in TLS by being selective on when
we store the checkpoints before we speculate. Martinsen et al. [63] show that less
than 1.8% of all the speculations result in a rollback. However, if we choose to
store the checkpoint far away from the rollback, the number of bytecode instruc-
tions that need to be re-executed increases. Martinsen et al. [61] show that nested
speculation is necessary to decrease the execution time; therefore we investigate
the e�ects on memory usage and execution time of not storing the checkpoints at
all speculation depths. Further, we propose an adaptive heuristic that dynami-
cally adjusts when we store the checkpoints depending on the speculation depth
and the number of rollbacks.

We show that we can reduce the memory usage in TLS by nearly 90% by
limiting at what speculation depth we store the checkpoint, and in several cases
also improve the execution time. Based on these �ndings, we develop and evaluate
an adaptive heuristic, which reduces the memory usage by over 90% and has an
execution speed close to the results of Martinsen et al.

Our main contributions are:

• Reducing the memory requirements of software-based TLS in JavaScript by
only storing a limited number of checkpoints.

• An in-depth study of the e�ects of limiting the number of checkpoints for
a TLS in JavaScript.

• An adaptive heuristic which signi�cantly reduces the memory usage for TLS
and improves the execution time.

This paper is organized as follows; in Section 8.2, we introduce JavaScript,
web applications and TLS. In Section 8.3, we present the TLS implementation

138



used in our study. In Section 8.4 we present our approaches to reducing the
memory usage in TLS. In Section 8.5, we present the experimental methodology,
while in Section 8.6 and Section 8.7 we evaluate the e�ects of a �xed number of
checkpoints and the adaptive heuristic. Finally, in Section 8.8 we conclude our
�ndings.

8.2 Background and related work

8.2.1 JavaScript and web applications

JavaScript is a dynamically typed, object-based scripting language with run-time
evaluation used in web applications. JavaScripts performance has reached a high
single-thread performance on a set of benchmarks. Ratanaworabhan et al. [84]
show that the results from these benchmarks are misleading for the execution be-
havior of web applications and Martinsen et al. [63] show that optimizing towards
the characteristics of the benchmarks slows down the web applications.

Web applications manipulate parts that are not accessible from a JavaScript
engine. The scripted functionality is executed in a JavaScript engine, but the
program �ow is de�ned in the web application. Richards et al. [89] show that
web applications use JavaScript speci�c features extensively such that various
parts of the program are de�ned at run-time.

A key concept in web applications is the Document Object Model (DOM).
DOM is an interface that allows programs and scripts to dynamically access and
update the content of documents. The document can be further processed and
the results can be incorporated back into the presented page. The programmer
can modify, create, or delete elements and content in the web applications through
the DOM tree with JavaScript.

8.2.2 Thread-Level Speculation principles

Picket and Verbrugge's [81] TLS approach is to allocate each function call in
software as a thread. Then, they can (ideally) execute as many function calls in
parallel as they have processors. However data dependencies and return values
limits the number of function calls that can be executed in parallel. Martinsen
et al. [63] show that the memory requirements and Rudberg et al. [91] show that
the run-time overhead for detecting data dependencies can be considerable.
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Between two functions we can have three types of data dependencies: Read-
After-Write (RAW), Write-After-Read (WAR), and Write-After-Write (WAW).
A TLS implementation must be able to detect these dependencies during run-
time using information about read and write addresses from each function call. A
design parameter for TLS is the precision of at what granularity of true-positive
/ (true-positives + false-positives) data dependency violations are detected.

When a data dependency violation is detected, the execution must be rolled
back to a safe point in the execution. Thus, all TLS systems need a rollback
mechanism. In order to be able to do rollbacks, we need to store both speculative
updates of data as well as the original data values. The book-keeping results in
both a memory overhead as well as a run-time overhead. In order for TLS to be
fast, the number of rollbacks should be low.

The more precise tracking of data dependencies, the larger memory overhead
is required. One e�ect of imprecise dependence detection is the risk of a false-
positive violation, i.e., when a dependence violation is detected when no actual
(true-positive) dependence violation is present. As a result, unnecessary roll-
backs are done, which increase the execution time. TLS implementations di�er
depending on whether they update data speculatively 'in-place', i.e., moving the
old value to a bu�er and writing the new value directly, or in a speculation bu�er.

8.2.3 Thread-Level Speculation in JavaScript and for web

applications

Mehrara and Mahlke [67] target trace-based JIT-compiled JavaScript code, where
the most common execution �ow is compiled into an execution trace. Run-time
checks (guards) are inserted to check whether control �ow etc. is still valid for
the trace or not. They execute the run-time checks (guards) in parallel with the
main execute �ow (trace), and have one single main execution �ow.

Mehrara et al. [66] introduce a lightweight speculation mechanism that focuses
on loop-like constructs in JavaScript. As this code uses the trace feature of
Spidermonkey, a selective form of speculation is employed.

Mickens et al. [68] suggest an event-based speculation mechanism which is
deployed as a JavaScript library (Crom) which clones certain regions of the
JavaScript code that are executed speculatively.

Martinsen et al's [63] approach is to execute the main execution �ow in par-
allel which they evaluate on popular web applications and show that there is a
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signi�cant potential for TLS in web applications. Figure 8.1 shows that Just-
in-time compilation (JIT) increases the execution time of web applications as
compared to interpretive execution, and shows that neither the Squirrel�sh or
V8 JavaScript engine improves execution time for JavaScript in web applications
with JIT. They also show that nested TLS is necessary in order to improve the
execution time with TLS.

Figure 8.1: Speedup of Thread-Level Speculation and Just-in-time compilation for
a number of popular web applications. The black horizontal line is the sequential
execution time of Squirrel�sh without Thread-Level Speculation (the �gure is used with
permission from the authors of [63]).

Martinsen et al. [47] suggest three heuristics for re-speculation on previous
mis-speculations. Their conclusion is that the overall problem with TLS in
JavaScript for web applications is not the number of rollbacks but the memory
usage.

Martinsen et al. [61] show that by limiting the number of threads, the amount
of memory, and the speculation depth we both save memory and improve the
execution time. In many cases a speculation depth of 2 to 4 is su�cient to
improve the performance because of the nature of JavaScript execution in web
applications. JavaScript execution in web applications as events are restricted to
be executed for no more than half a minute. This indicates the lack of large loop
structures, which again reduces the e�ect of JIT.

In summary, Martinsen et al's [63] over 1500 MB memory usage in TLS is
a concern. We have not found any studies that look at reducing the memory
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overhead of TLS in web applications by being restrictive on when we store check-
points.

8.3 TLS implementation for JavaScript

Martinsen et al. [63] implemented TLS in the Squirrel�sh JavaScript engine.
The speculation is done on JavaScript functions in a nested manner, including
return value prediction, and all data con�icts are detected at run-time. When
a con�ict is detected, a rollback is performed. We extend Martinsen et al.'s
implementation with a mechanisms to limiting the number of checkpoints, and
use it for the measurement and the analysis.

The execution in Squirrel�sh is divided into two; �rst the JavaScript code is
compiled into bytecode instructions, then the bytecode instructions are executed.
We extract the bytecode instructions which are to be executed, and the execution
trace of a sequential execution of the bytecode instructions. We use this to vali-
date the correctness of the speculative execution o�-line. We initialize a counter
realtime to 0. For each executed bytecode instruction, the value of realtime is
increased by 1. We give the function call a unique id (p_realtime)

When we execute a op_call bytecode instruction we extract the realtime value
and the id of the speculated function that makes this function call, e.g., p_0220
(a function is called after 220 bytecode instructions from p_0). In Figure 8.2 the
value of the position of this function call emulates the sequential execution order
for TLS. This is possible in web applications since there is going to be a large
number of JavaScript function calls. We check if this function previously has
been speculated by looking up the value of previous[function_order]. previous is
a vector where each element is indexed by the function_order. If the value is 1,
then the function has been speculated unsuccessfully. If not, this function call is
a candidate for speculation.

Then we do the following; we set the position of the function call's previ-
ous[function_order] = 1. We save the state which contains the list of previously
modi�ed global values, the list of states from each thread, the content of the
variables in the JavaScript engine, and the content of previous.

We create a new thread for the function with a unique id. We copy the value of
realtime from its parent and modify the state of the parent such that the current
instruction is changed from the position of the op_call bytecode instruction to
the position of the associated op_ret bytecode instruction.

142



Figure 8.2: We use the order that the functions are called in, to determine the order
in which the program would have been sequentially executed. This works in JavaScript
in a web applications setting, as there are multiple function calls. For instance, in a
simpli�ed example the JavaScript function f0, performs 3 function calls, f01, f02 and
f03. f01 performs two function calls, f011 and f012. Thus, we have created a speculation
tree from the function calls. If we traverse this tree from left to right, we get an order
in which the functions are called, equal to the order in which the functions would be
sequentially called, in order to uphold the sequential semantics during execution with
TLS. More speci�c: f0 at time p_1, f01 at time p_2, f011 at time p_3, f012 at time
p_4, f02 at time p_5, and f03 at time p_6. We denote how each function is ordered as
function_order

We have two functions executing as concurrent threads, and this process is re-
peated each time a op_call bytecode instruction is encountered, thereby allowing
nested speculation. For correct speculative execution, we check for write and read
con�icts between global variables, object property id names, unsuccessful return
value predictions of function calls, and whether we write to the DOM tree. If a
con�ict occurs, we perform a rollback. When a speculative function encounters
op_ret, modi�cations of global variables and object property ids are committed
back to their parent thread. However the commit cannot be completed before its
speculative function calls return.

8.4 Reducing the memory usage for TLS

8.4.1 Motivation for limiting the checkpoint depth

In nested TLS, we store a checkpoint before we speculatively execute a function.
The checkpoint is used if we mis-speculate and need to perform a rollback, e.g.,
due to a data con�ict. However, when the speculation is correct, then the stored
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checkpoint is removed when we commit back to it's parent thread. Martinsen et
al. [63] show that 1.8% of the speculations result in a rollback, therefore most
checkpoints are never used. The number in the parenthesis in Figure 8.6 shows
that the memory usage can be 1527 MB for TLS.

Martinsen at al. [61] show that nested speculation is necessary to reduce the
execution time, and that the speculation depth for 85% of all functions is between
2 and 4. Therefore, most rollbacks occur between depth 2 and 4, and as a result,
it could be more meaningful to store the checkpoints below these depths as we
expect a rollback at such a depth.

8.4.2 Fixed checkpoint depth limit

When a speculatively executed function makes a speculative function call, the
depth of the speculated function is the caller's depth+1. The checkpoint of
a speculative function is saved at a checkpoint depth equal to the depth of the
function speculated. When we make the �rst speculation, the checkpoint is stored
at checkpoint depth = 1.

Our idea is to limit the checkpoint depths were we store the checkpoints, but
still allow an unlimited speculation depth. Normally, in case of a rollback we
would go back to the caller function's parent checkpoint. In our approach, we
suggest to only store checkpoints at a certain checkpoint depth.

Before a speculation, a prede�ned checkpoint depth limit is compared to the
function's checkpoint depth. If the checkpoint depth is equal or below the check-
point depth limit, we store the checkpoint. If the value of the checkpoint depth is
higher than the checkpoint depth limit, we do not store the checkpoint, instead,
on rollbacks we go to the previous stored checkpoint. This reduces the memory
as we store a lower number of checkpoints, but this also means that rollbacks
require a larger number of bytecode instructions to be re-executed. An example
is shown in Figure 8.3.

8.4.3 An adaptive heuristic

A �xed checkpoint depth limit does not adapt to functions speculatively executing
at di�erent depths and rollbacks. We would like to store less checkpoints to reduce
memory usage, but this makes rollbacks take more time. We therefore propose
an adaptive heuristic that dynamically adjusts the checkpoint depth limit based
on the speculation depth and rollback behavior of a web application.
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Figure 8.3: Before we speculatively execute a function at (i), we save the state so we
can rollback to this point. At (ii), i.e., the speculative function made as a speculative
function call at (i), we speculatively execute another function call (iii). In normal TLS,
we also save the state in (ii) in case of a rollback. In our proposal, we do not store the
state at checkpoint in (ii) if the checkpoint depth is set to 1. If a rollback occurs in
(iii), we would normally rollback to (ii). However, in our proposal we would rollback to
(i). As a result, we do not need to store the checkpointed state in (ii), with the cost of
doing a rollback back to (i) instead of to (ii).

The heuristic in Listing 8.1 speeds up the execution time up to 8× and reduces
the memory usage by over 90%, by being selective at which checkpoint depth
limit we store the checkpoints. Martinsen et al. [63] show that as the speculation
depth increases we have more rollbacks. If a rollback occurs, we want to reduce
the number of bytecode instructions that needs to be re-executed. Martinsen et
al. [63] show that rollbacks are rare, but that they often occur between speculative
functions with the same depth and occur closely after each other. Therefore,
when a rollback occurs, we want to increase the limit to ensure that the number
of re-executing bytecode instructions is reduced for preceding rollbacks.
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Listing 8.1: Since we are using nested speculation, each thread has a depth. First
we go through all the threads executing and place their depth in a list l. In the
next stage, we sort the list l ascending. Initially we set a variable m to 0.5. The
value m is increased to m = m + 1.0 / pow(2, no_rollback + 1) if there is a
rollback. Therefore, after the �rst rollback m would be 0.75, after the second
rollback m would be 0.825, etc. We pick the element a from l[m×length of l], if
the depth of the function we are about to speculate on is lower than a, we save
the state. If not, we make sure that, in case of a rollback, we rollback to the last
checkpoint were the state was saved. If the length of l is lower than 3 we set a to
2.

bool sp e cu l a t e ( i n t depth ){
l = fetch_depth_of_threads ( ) ;
s o r t ( l ) ;
m = m + 1.0 / pow(2 , no_rol lback + 1 ) ;
i f ( l en ( l ) < 3)
re turn 2 > depth ;

i n t a = l [ |m ∗ l en ( l ) | ] ;
r e turn a > depth ;

}

If a speculative function makes a function call, we create another thread. This
threads' parent will be in the list of executing functions. One of the functions in
this list could have a suitable checkpoint to rollback to and the motivations for
doing this, is that the threads executing when you speculate on a function call,
is probably one of the depths you will rollback to in case of a rollback. We can
choose one such thread by the median of the currently executing threads' depths.
Therefore the median could be a suitable automatic choice for a limitation of the
checkpoint depth. However a �xed median value (like 0.75 or 0.25× the length of
the list with depths), even though it made the memory usage lower, increased the
execution time. This can be understood from the characteristics of JavaScript
execution shown by Martisen at al. [58]; JavaScript functions are small in terms
of number of executed bytecode instructions and quickly returns. Therefore the
depth of the speculated functions is going to vary.

In Figure 8.4 the number of threads executing varies greatly. This is a re-
sult of nested speculations; each speculated function executes a small number of
bytecode instructions, but they are idle while waiting for their child threads to
commit back. This argues for an adaptive approach to �nd a suitable limit to
the checkpoint depth. In addition, a �xed checkpoint depth limit does not take
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Figure 8.4: The maximum number of threads for various points during the execution
for linkedin.

rollbacks into account. Since a rollback is often followed by new rollbacks we
use a moving median m, as seen in Listing 8.1. JavaScript in web applications is
restricted to a single call to the JavaScript engine, so we do not increase m when
we speculate successfully.

8.5 Experimental Methodology

We have modi�ed the TLS implementation from Martinsen et al. [63] so we
control whether we store a checkpoint or not. The execution behavior of a web
application is dependent not only on the JavaScript isolated, but also on the
interaction between JavaScript and the web browser such as manipulation of the
DOM tree, but we deliberately focus on the JavaScript execution time.

We have selected 15 web applications from the Alexa list [4] of most visited
web applications. The experiments are made on a computer running Ubuntu
10.04 equipped with 2 quadcore, Xeon R© 2Ghz processors with 4MB cache each,
i.e., in total 8 cores (without hyper-threading), and with 16 GB main memory.

8.6 Results of �xed checkpoint depths

The main results of limiting the checkpoint depth are that we are able to reduce
the memory usage, and even in certain cases have a higher speedup. We evaluate
the e�ects of storing the checkpoint up to the checkpoint depth limits 1, 2, 4, 8,
and when we set no limitation on the checkpoint depth limit, both in terms of
execution time, memory usage for speculation, rollbacks, number of threads, and
number of speculations.
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8.6.1 Improved execution time

Increasing the checkpoint depth does not decrease the execution time. In Fig-
ure 8.5, the highest speedup for 11 of the 15 use cases is when we limit the
checkpoint depth to either 2, 4 or 8. Without a limit to the checkpoint depth is
the fastest for 3 out of 15 cases. If we limit the checkpoint depth to 2, it is the
fastest for 4 out of 15 cases, if we limit the checkpoint depth to 4 or 8, it is the
fastest for 6 out of 15 (for the cases Wikipedia and Blogspot the maximum check-
point depth is 4, therefore the behaviour is identical when we limit the checkpoint
depth to either 4 or 8).

The overhead of TLS is increasing with an increased limit on the checkpoint
depth, and the potential for �nding functions to speculate on decreases as the
checkpoint depth increases over 4. This follows the JavaScript execution model
in web applications, where we are limited by a certain amount of time for each
JavaScript call.

Figure 8.5: The speedup when we limit the checkpoint depth to 1, 2, 4, 8 and put no
restriction on the checkpoint depth and the speedup of the adaptive heuristic.

When we limit the checkpoint depth to 2, it is on average 2.39 times faster
than the sequential execution time. When we limit the checkpoint depth to 4, it
is 2.64 times faster and when we limit the checkpoint depth to 8, it is 2.61 times
faster. When we do not limit the checkpoint depth, we see that it is on average
2.45 times faster than the sequential execution time.

When we set the checkpoint depth limit to 2, it is on average 2% slower
than when we do not limit the checkpoint depth limit, but uses only 65% of the
memory. When we set the checkpoint depth limit to 4 or 8, it is 7% and 6%
faster and uses 83% and 97% of the memory.

In Figure 8.5 both Wikipedia and Gmail are faster for a checkpoint depth
limit = 1. Wikipedia has no rollbacks, and compared to the other cases, a small
number of JavaScript bytecode instructions that are executed with for instance
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Figure 8.6: The memory usage when we limit the checkpoint depth to 1, 2, 4, 8 and
for the adaptive heuristics relative to when we set not checkpoint depth.

12 speculation versus 12012 for MSN. Therefore, we do not see an increased
execution time with rollbacks, as there are none, independent of what checkpoint
depth limit we set. Further, we do not get a signi�cant speedup, since the number
of bytecode instructions and the number of functions to speculate on are much
lower.

Gmail has 40 threads executing at checkpoint depth 1 and 32 threads exe-
cuting at checkpoint depth 2. If we count the number of rollbacks, we see that
there are 11 rollbacks when we set the checkpoint depth limit to 1, and 17 roll-
backs when we set the checkpoint depth limit to 2. Still the execution time is 2%
faster setting the checkpoint depth limit = 2, than when checkpoint depth limit =
1. This appears counterintuitive, since there is a larger number of threads and a
lower number of rollbacks, so it should be able to exploit running more JavaScript
functions in parallel than for checkpoint depth limit=2 and therefore should be
faster. However, the cost of doing rollbacks is much higher for checkpoint depth
limit=1, than it is for checkpoint depth limit=2. So the e�ect of having a larger
number of threads for checkpoint depth 1 does not outweigh the cost of doing
rollbacks, therefore it is slower than checkpoint depth limit=2, but because of
the large number of threads and a lower number of rollbacks, it still faster than
sequential execution.

In Figure 8.5 the gain in improved execution time is marginal if we limit
the checkpoint depth to 8 instead of 2 or 4. This is in line with the results of
Martinsen et al. [61]. Most of the JavaScript function calls have a depth of 2
and 4. There is a limit to the amount of time JavaScript is allowed to execute
for each event in the web application. Therefore, as the depth of a function
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increases, the number of executing bytecode instruction decreases. This explains
why there isn't a large increase in the cost of doing rollbacks, when we rollback
from a checkpoint depth larger than 4 and that the relative increase in execution
time decreases as the depth increases.

The highest speedup is at checkpoint depth limit=4. Then the speedup is
gradually reduced to checkpoint depth limit=8, and further reduced when no
checkpoint depth limit is set. Still it is faster than the sequential execution
time. This shows that the overhead of TLS increases when we increase the
checkpoint depth limit, and the gain in terms of more functions to speculative
execute decreases with an increased depth.

For Facebook the execution time improves for checkpoint depth limit = 2,
then for checkpoint limit = 4 it is slower than the sequential execution time.
If we compare the number of rollbacks with the number of executed bytecode
instructions, this gradually decreases to checkpoint depth limit=8. From the ob-
servation of the execution time when we set no limit to the amount of checkpoint
stores, this shows that the number of executed bytecode instructions decreases,
and that we at some point are able to have a lower execution time such that it is
lower than the sequential one.

At checkpoint depth limit=2 the cost of the rollbacks is increasing so that it
is 2% slower than when no limit is set. When we set a checkpoint depth limit=1,
it is slower than the sequential execution time.

In Figure 8.7 the number of executed bytecode instructions is, as long as
there are rollbacks, always higher with TLS. We see that the number of executed
bytecodes increases when the checkpoint depth limit decreases which shows that
the costs to do rollbacks and to do re-execution increase.

In the lower part in Figure 8.7, we see that the number of rollbacks increases,
as the checkpoint depth limit increases. The cost of doing a rollback decreases as
the checkpoint depth increases, even though the number of rollbacks decreases.
This is because the amount of bytecode instructions re-executed will be lower,
even though there are more rollbacks. Therefore we reduce the memory usage,
and have a higher speedup, if we are more restrictive on the checkpoint depth
since the number of re-executed bytecode instructions will be smaller.

The highest speedup is at checkpoint depth limit = 4. Then the speedup
is gradually lowered going to checkpoint depth limit = 8, and further lowered
when no limit on the checkpoint depth is set. Still it is faster than the sequential
execution time. This indicates that the overhead of TLS increases when we
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increase the checkpoint depth limit, and the gain in terms of potential more
functions to execute from a higher checkpoint depth limit is lowered.

For Facebook we see that the execution time improves for checkpoint depth
limit = 2, then for checkpoint depth limit = 4 the execution time decreases to
below the sequential execution time. If we compare the number of rollbacks
with the total number of executed bytecode instructions, this number gradually
decreases toward checkpoint depth limit=8. This shows that the number of ex-
ecuted bytecode instructions decreases, and that we are able to have a lower
execution time.

At checkpoint depth limit = 2 the cost of the rollbacks in terms of executed
bytecode instructions is increasing to such an extent that it is 2% slower than
when no limit is set on the checkpoint depth. When we set a checkpoint depth
limit = 1 it is slower than the sequential execution time.

8.6.2 Reduction in memory usage

Increasing the limit of the checkpoint depth increases the memory usage. In
Figure 8.6 we have measured the maximum memory usage for the selected use
cases when we limit the checkpoint depth to 1, 2, 4, 8 and when we have no limit
on the checkpoint depth. Since the memory usage varies between 1 and 1527MB,
we have divided each memory usage with the memory usage when we do not limit
the checkpoint depth. We have written the memory usage for TLS in Martinsen
et al. when we do no limit on the checkpoint depth in parenthesis in Figure 8.1.

Figure 8.6 shows that the memory usage is increasing as we increase the
checkpoint depth limit. The reason is that we are saving more states in case
of rollbacks. When we are limiting the checkpoint depth to 2, we reduce the
memory usage of TLS with 65%. When we limit the checkpoint depths to 4 and
8, we reduce the memory usage with 14% and 3% respectively.

For Linkedin, Blogspot, Google, Ebay, YouTube and myspace, the memory
usage is higher with a checkpoint depth limit = 8, than when we do not limit the
checkpoint depth. There are two operations in TLS which reduce the memory
usage; when we rollback on mis-speculations and when we commit a function
back to its parent thread when a function completes execution.

In Linkedin we have almost the same number of threads and speculations;
however when we do not limit the checkpoint depth, the number of rollbacks
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Figure 8.7: The number of executed bytecode instructions in Thread-Level Specula-
tion relative to the number of sequentially executed bytecode instructions (upper) and
the number of rollbacks relative to the number of rollbacks when we do not limit the
checkpoint depth (lower). A special case in the Figure is the wikipedia case, were there
are no rollbacks, so the number of executed bytecode instructions are the same for TLS
and for the sequential execution.

becomes much higher, therefore we are able to reduce more memory than when
we limit the checkpoint depth to 8.

Blogspot and Ebay almost have the same number of speculations, but without
a limit on the checkpoint depth we get a larger number of threads and rollbacks.
Then we reduce the memory both from rollbacks and when we commit values to
parents' threads.

For Myspace and Google, we have a larger number of speculations than when
we limit the checkpoint depth to 8, while the number of threads and rollbacks
are the same, which shows that we have more rollbacks and threads relative to
the number of speculations, which reduces the memory.
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For YouTube we have the same number of threads, fewer speculations, but
a huge increase in the number of rollbacks. We free more memory on rollbacks,
and therefore have a lower maximum memory usage.

For these 6 cases, the memory usage is larger for a checkpoint depth of 8 than
when no checkpoint depth is set. If we rollback to a di�erent checkpoint depth,
we may �nd other speculation possibilities, which may use more memory as we
speculate di�erently.

The main observations from these measurements are; We are able to improve
the execution time by 7% by limiting the checkpoint depth over when we do not
limit the checkpoint depth. We are also able to reduce the memory usage by
65%. This shows that the e�ect of not limiting the checkpoint depth in terms of
execution time is limited, but that not limiting the checkpoint depth requires a
large amount of memory.

8.7 Results of the adaptive heuristic

The key idea of the heuristic is to select the checkpoint depth limit in relation
to already executing threads. The adaptive heuristic signi�cantly reduces the
memory usage for TLS, and gives an execution time that is close to the execution
time when we set no limit on the checkpoint depth. Since we are using nested
speculation, there might be a large number of threads already executing when
we speculate. When a rollback occurs, we try to select a checkpoint depth in
the speculation tree such that the number of bytecode instructions in case of
rollbacks in the future will be lowered.

8.7.1 Improved execution time

Figure 8.5 shows that we are able to increase the speedup of JavaScript execution
from 1.14 � 8.69 times faster (MSN and YouTube), and have a speedup which
more than half the time is faster than when we do not set any limitation on the
checkpoint depth, and always better than the sequential execution time (except
for BBC ). One example of the e�ect of the heuristic is the YouTube web appli-
cation; when no limit is set on the checkpoint depth, it uses 255 MB and is over
8 times faster. With the heuristic it only uses 44 MB (a reduction of 83%) while
it is only 4% slower compared to when no limit is set on the checkpoint.
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Overall, the heuristic makes us select a checkpoint depth such that there is
a low number of bytecode instructions to re-execute if there will be a rollback.
This can be seen from measuring the number of bytecode instructions that is
re-executed at a rollback. The number of rollbacks is higher with the heuristic
than for checkpoint depth limit = 1, but each rollback requires less bytecode
instructions to be re-executed with the heuristic. We also see that if there will
be a rollback, and there are a large number of threads executing, we are bound
to rollback to the parents speculative functions, which are nearby, which in the
future makes rollbacks require less bytecode instructions to re-execute. If the
depth is lower than 3, we choose to save the state to 1, which we saw was costly
for checkpoint depth 1, but at the same time, if the number of executing threads
are low Martinsen et al. show that it is not very likely to have a rollback.

Figure 8.8 shows the checkpoint depths in the only example which is slower
than the sequential execution with the heuristic. The memory usage is 93%
of the memory usage when no checkpoint depth is set. This is caused by the
heuristic rolling back to a checkpoint depth which is close to 1, repeatedly. This
signi�cantly reduces the memory usage, but increases the cost of rollbacks as it
forces us to re-execute many bytecode instructions.

Figure 8.8: The selected checkpoint depths during execution of the bbc use-case

When a small number of threads are executing, we do not really need to store
the checkpoint. If a rollback occurs, the amount of bytecode instructions we have
to re-execute will be small. This has two consequences; �rst, given the limitations
of allowed execution time in JavaScript in web applications, the functions that
are executing are at this point quite large. The next consequence is, if there will
be a rollback in these, the number of bytecode instructions for the re-execution
is limited. Therefore the heuristic reduces the execution time.
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8.7.2 Reduction in memory usage

Figure 8.6 shows that we reduce the memory usage between 93% � 45% (BBC
and Linkedin). One exception is Wikipedia, but this use case does not have any
rollbacks, little JavaScript execution, and a low number of JavaScript function
calls, which limits the potential gain from speculations.

The heuristic is able to reduce the memory usage below when we set the
checkpoint depth limit to 1. In Figure 8.6, for 9 out of the 15 use cases, the
memory usage is lower with the heuristic than when we set the checkpoint depth
limit to 1.

The heuristic has a higher number of rollbacks and a higher number of specu-
lations. This explains why the memory usage is lower, both with more rollbacks
with small number of bytecode instructions that needs to re-executed and more
commits. Since we are using nested speculation, a speculated function could be
created from a function executing speculativly. We could imagine the functions
executing in a tree like structure, similar to the one in Figure 8.3. When we do
a rollback, we would like to rollback to a state, which is part of the speculation
tree, to reduce the number of bytecode instructions that needs to be re-executed.
With a checkpoint of 1, we often re-execute bytecode instructions which are not
part of the speculation tree, but with a moving median we might not.

When the number of already executing threads is below 3, there will probably
be no rollback; therefore we set the checkpoint depth to 2. This means that we
in many cases do not save the state when there is a low number of threads, and
therefore we save memory, which leads to a memory usage similar to checkpoint
depth 1. So when we stay in the speculation tree, we have a higher number of
rollbacks (we saw this from the increase in rollbacks when we increased the spec-
ulation depth) and we are careful where we store the checkpoint when there are
few active threads. This indicates that the number of threads already executing
when we are about to speculate on a function call, is highly dynamic, since the
amount of execution performed by each JavaScript function is small. This means
that the value of the checkpoint depth needs to be dynamically set. When there
are a small number of threads already executing, there is not really a need to
save the checkpoint. If there is a large number of threads, there is likely going
to be many threads with di�erent depths, and in that case, make sure that the
checkpoint is near so you rollback in the speculation tree.

The results of this heuristic, is that we are able to signi�cantly improve the
execution time, while reducing the memory usage by over 90% by adaptively
selecting at what depth we are storing checkpoints.
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8.8 Conclusions

We have (i) proposed to reduce the memory usage of Thread-Level Speculation in
JavaScript virtual machines by only storing states up to certain limited checkpoint
depths, and (ii) we proposed and evaluated an adaptive heuristic to dynamically
adjust the checkpoint depth.

Our results show that we do not need to save the state each time we specula-
tively execute a function. As a result, we can reduce the amount of memory used
for speculation. However, since nested speculation has been shown to be neces-
sary, we need to save states on at least checkpoint depth 2 in order to improve
the execution time, or it will be too expensive to do the necessary rollbacks.

Further, our results show that our proposed adaptive heuristic reduces the
memory usage signi�cantly, over 90% as compared to when no checkpoint limit
is set. The execution time of our adaptive heuristic is approximately the same as
when using no checkpoint limit, sometimes it is slightly (4%) slower but it has
also been shown to be over 50% faster.
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Chapter 9
Paper VIII

Combining Thread-Level Speculation and Just-In-Time
Compilation in Google's V8 JavaScript engine

Jan Kasper Martinsen, Håkan Grahn, and Anders Isberg

Submitted to journal for publication

9.1 Introduction

JavaScript is a sequential, dynamically typed, object based scripting language
with run-time evaluation typically used for clientside interactivity in web appli-
cations. Several optimization techniques have been suggested to speedup the
execution time [30, 108, 72]. However, the optimization techniques have been
measured on a set of benchmarks, which have been reported as unrepresentative
for JavaScript execution in real-world web applications [56, 84, 89]. A result of
this di�erence is that optimization techniques such as Just-in-time compilation
(JIT) often increase the JavaScript execution time in web applications [58].

Fortuna et al. [25] have shown that there is a signi�cant potential for par-
allelism in many web applications with a speedup of up to 45× the sequential
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execution time. To take advantage of this observation, and to hide the complex-
ity of parallel programming from the JavaScript programmer, one approach is to
dynamically extract parallelism from a sequential program using Thread-Level
Speculation (TLS) [91].

A lightweight speculation mechanism for JavaScript that focuses on loop-like
constructs is introduced [66], and gives speedups by a factor of 2.8. Another
approach increases the responsiveness of web applications [68].

Our goal is to reduce the JavaScript execution time by dynamically extracting
parallelism. In [63], a TLS implementation with the Squirrel�sh JavaScript engine
(without JIT enabled) gave signi�cant speedups to the execution time compared
to the sequential execution time on a dual quadcore computer.

We present the �rst method-level Thread-Level Speculation implementation
(TLS) in a JavaScript engine which supports Just-in-time compilation (JIT) and
where we measure the execution time on a range of web applications, the Google
maps application and HTML5 demos. We have not found any other studies
with the TLS+JIT combination. The implementation is done in Google's V8
JavaScript engine that only supports JIT. We perform the experiments in the
Chromium web browser and execute use cases to mimic normal usage in the web
applications. The motivation for using this JavaScript engine is that the results
in [58] show that even though the workload in web applications often is not
suitable for JIT, Figure 9.1 shows that the V8 JavaScript engine is often faster
than the Squirrel�sh engine with JIT enbabled.

We measure the execution time of our TLS+JIT combination on 45 use cases
from 15 popular web applications. Further, in order to evaluate our implemen-
tation on a wider range of applications, we also evaluate our implementation on
20 HTML5 demos from the JS1K competition (http://js1k.com/), and 4 use
cases from Google Maps web application. The experiments are evaluated on 2,
4, and 8 cores on an dual quad core computer (8 cores) where we can disable the
number of cores to 2 and 4.

The results of this study show that we need more than 2 cores to always im-
prove the execution time with the TLS+JIT combination. The average speedup
is 2.9 when running on 4 cores and on average 4.7 when running on 8 cores with-
out any changes to the sequential JavaScript code on a set of very popular web
applications. We �nd an average speedup to be between 2.11 and 2.98 on 4 and
8 cores on a set of HTML5 demos, and an average speedup of 3.54 and 4.17 on
4 and 8 cores for the Google maps web application.
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Web applications use an event driven execution model, such that JavaScript
is executed in such a way that TLS can be used with JIT, and still reduce the
execution time. In addition the V8 JavaScript engine has features that are advan-
tageous for Thread-Level Speculation and therefore it is suitable to be combined
with TLS.

This paper is organized as follows; in Section 9.2 we introduce JavaScript
and web applications, as well as principles and previous work on Thread-Level
Speculation. In Section 9.3, we present our implementation of Thread-Level Spec-
ulation in the V8 JavaScript engine. In Section 9.4 we present the experimental
methodology as well as the 45 web application use cases, the 20 HTML5 use cases,
and the 4 use cases for Google Maps. In Section 9.5 we present the experimental
results of running the use cases on 2, 4 and 8 cores, and discuss the results of
these measurements. Finally, in Section 9.6 we conclude our �ndings.

9.2 Background and related work

9.2.1 JavaScript and web applications

JavaScript [37] is a dynamically typed, object-based scripting language often
used for interactivity in web applications with run-time evaluation. JavaScript
application execution is done in a JavaScript engine and it has a syntax similar to
C and Java, while it o�ers functionalities often found in functional programming
languages, such as closures and eval functions [88].

The performance of popular JavaScript engines such as Google's V8 en-
gine [30], WebKit's Squirrel�sh [108], and Mozilla's SpiderMonkey and Trace-
Monkey [72] has increased during the last years, reaching a higher single-thread
performance for a set of benchmarks. It has been shown that the results from
these benchmarks is misleading [56, 84, 89] for real life web applications, and
that optimizing towards the characteristics of the benchmarks may increase the
execution time in web applications [58, 63].

Web applications are commonly web pages where interactive functionalities
are executed in a JavaScript engine. Web applications' functionalities are typi-
cally de�ned as events. These events are de�ned as JavaScript functions that are
executed for instance when the user clicks a mouse button, a web page loads for
the �rst time or tasks that are executed between time intervals. In contrast to
JavaScript alone, web applications might manipulate parts of the web applica-
tion that are not directly accessible from a JavaScript engine alone. The scripted
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functionality is executed in a JavaScript engine, but the program �ow is de�ned
in the web application.

Previous studies show that web applications use JavaScript speci�c program-
ming language features extensively [56, 84, 89]. For instance, various parts of
the program are de�ned at run-time (through the use of eval functions), and the
types and the extensions of objects are extensively re-de�ned during run-time
(for instance through anonymous functions).

A key concept in web applications is the Document Object Model (DOM).
DOM is a platform- and language-neutral interface that will allow programs and
scripts to dynamically access and update the content, structure and style of
documents. The document can be further processed and the results of that
processing can be incorporated back into the presented page. The programmer
of the web application can modify, create, or delete elements and content in the
web applications through the DOM tree with JavaScript.

9.2.2 Thread-level speculation principles

TLS aims to dynamically extract parallelism from a sequential program. This
has been done both in hardware, e.g., [14], and in software, e.g., [81, 91].

One popular approach is to allocate each loop iteration to a thread. Another
method is method-level speculations, where the underlying system tries to execute
function calls as threads. Then, we can (ideally) execute as many iterations or
function calls in parallel as we have processors. However data dependencies may
limit the number of iterations and function calls that can be executed in parallel.
Further, the memory requirements and overhead for detecting data dependencies
can be considerable.

Between two consecutive loop iterations or between access to global variables
in two function calls, we can have three types of data dependencies: Read-After-
Write (RAW), Write-After-Read (WAR), and Write-After-Write (WAW). In ad-
dition, when we speculate on function calls, we must be able to speculate on
their return value upon speculation. A TLS implementation must be able to de-
tect these dependencies during run-time using information about read and write
addresses from each loop iteration. A key design parameter for a TLS system
is the precision of at what granularity of true-positive / (true-positives + false-
positives) it can detect data dependency violations.
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When a data dependency violation is detected, the execution must be aborted
and rolled back to a safe point in the execution. Thus, all TLS systems need a
rollback mechanism. In order to be able to do rollbacks, we need to store both
speculative updates of data as well as the original data values. As a result, the
book-keeping related to this functionality results in both memory overhead as
well as run-time overhead. In order for TLS systems to be e�cient, the number
of rollbacks should be low.

Another important factor in a TLS system is the data structures used to track
and detect data dependence violations. The more precise tracking of data de-
pendencies, the more memory overhead is required. Unfortunately, one e�ect of
imprecise dependence detection is the risk of a false-positive violation, i.e., when
a dependence violation is detected when no actual (true-positive) dependence
violation is present. As a result, unnecessary rollbacks need to be done, which
decreases the performance and increases the execution time. TLS implementa-
tions can di�er depending on whether they update data speculatively 'in-place',
i.e., moving the old value to a bu�er and writing the new value directly, or in a
special speculation bu�er.

9.2.3 Software-based Thread-Level Speculation

There exist a number of di�erent software-based TLS proposals. In this paper,
we review and divide them into three subgroups; general software Thread-Level
Speculation, Thread-Level Speculation in virtual machines, and Thread-Level
Speculation in JavaScript engines. We present the general software based system
in Table 9.1 where they majority of the solutions support either C, FORTRAN
or Java.

9.2.4 General software-based Thread-Level Speculation

9.2.5 TLS in JavaScript and web applications

Mehrara and Mahlke [67] address how to utilize multicore systems in JavaScript
engines. They target trace-based JIT-compiled JavaScript code, where the most
common execution �ow is compiled into an execution trace. Then, run-time
checks (guards) are inserted to check whether control �ow etc. is still valid for
the trace or not. They execute the run-time checks (guards) in parallel with the
main execute �ow (trace), and only have one single main execution �ow.
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Table 9.1: Examples of previous work on software Thread-Level Speculation.

Author Speedup #cores Benchmark Type Language
Chen and Oluko-
tun show [15, 16]

3.7�7.8 16 SPECjvm98 [95]
(with others)

method-level C and
JAVA

Bruening et
al. [13]

over 5 8 SPEC95FP and
SPEC92

applicable on
while loops

C

Rundberg and
Stenström [91]

10 16 Perfect Club
Benchmarks [8]

minimizing the
overhead

C

Kazi and
Lilja [41]

5�7 8 Perfect Club
Benchmarks [8]

exploit coarse-
grained paral-
lelism

C

Bhowmik and
Franklin [9]

1.64�
5.77

6 SPEC CPU95,
SPEC
CPU2000,
and Olden

exploits loop
and non-loop
parallism

C

Cintra and
Llanos [17]

16 16 SPEC CPU2000
[96] and Perfect
Club [8]

using a sliding
window with
loops

C

Renau et al. [86] 3.7�7.8 16 SPEC CPU2000
Benchmarks [96]

method-level C

Picket and Ver-
brugge [80, 81]

2 4 SPECjvm98 [95] method-level JAVA

Kejariwal et
al. [42]

2.5 SPEC CPU2000
Benchmarks [96]

Theoretical
study

C and
FORTRAN

Hertzberg and
Olukotun [34]

2.04 4 SPEC CPU2000
Benchmarks [96]

method-level C

Hertzberg and
Olukotun [34]

3�4, 2�
3, and
1.5�2.5

4 SPEC CPU2006
Benchmarks [97]

method-level JAVA

In [66], Mehrara et al. introduce a lightweight speculation mechanism that
focuses on loop-like constructs in JavaScript. If a loop contains a su�cient work-
load, it is marked for speculation. They were able to make speculation 2.8 times
faster for a set of well-known JavaScript benchmarks. Both studies of Mehrara
and Mahlke are made on the o�cial JavaScript benchmarks.

However, large loop structures are rare in real web applications [58]. Instead,
there are often a large number of function calls caused by events from the web
application.

Unlike [66], our approach is to execute the main execution �ow in parallel [63].
We implemented TLS in the Squirrel�sh JavaScript engine which is part of We-
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bKit [108], and evaluated it on 15 web applications. Our results show that there
is a signi�cant potential for parallel execution using TLS in web applications. In
addition, our results show that there is a signi�cant di�erence between JavaScript
benchmarks and the JavaScript executed in web applications. A serious conse-
quence of this is that Just-in-time compilation, which improves the execution time
for benchmarks, often prolongs the execution time for web applications which we
show in Figure 9.1. Our measurements were made both with Squirrel�sh and
V8 with the same concluding result, that Just-in-time compilation for 10 out of
15 cases (for Squirrel�sh) and 8 out of 15 cases for V8 improves the execution
time for JavaScript in web applications. V8 still executes with a higher speedup
than Squirrel�sh with JIT enabled. In the same paper we also show that nested
Thread-Level Speculation is necessary in order to improve the execution time
over the sequential execution.
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Figure 9.1: Speedup of Thread-Level Speculation and just-in-time compilation for
a number of popular web applications. The black horizontal line is the sequential
execution time of Squirrel�sh without Thread-Level Speculation.

In [64] we suggested three heuristics which allowed us to re-speculate on pre-
viously failed speculations. The conclusion was that while we found that our
combined heuristics gave us some gain by allowing respeculation, and reduced
the relationship between speculations and rollbacks, the overall problem with
TLS in JavaScript for web applications is not the number of rollbacks, as roll-
backs are very rare. Rather, as we saw in [63], with a memory usage up to over
1500 MB, the main problem is the amount of memory used to store the states
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in case of a rollback. However, this also implies that we save many states, which
most likely never will be used (i.e., for Imdb we make over 5000 speculations with
150 rollbacks).

To reduce the memory usage, we limit parameters such as the number of
threads, the amount of memory, and the depth in nested speculation [61]. Our
results show that it is possible to reduce the memory overhead and improve
the execution time by adjusting the limits to these parameters. For instance, a
speculation depth of 2 to 4 is enough to reach most of the speedup gained when
no limit is set to the speculation depth. It also shows that we need to use nested
speculation for Thread-Level Speculation for JavaScript in web applications.

In summary, there is a signi�cant amount of research done on software-based
Thread-Level Speculation. However, within managed programming languages
and JIT compilation, together with TLS, there is a gap in the research.

9.3 Implementation of TLS in V8

9.3.1 JIT compilation in V8

JavaScript in web applications are to a large extent event-driven. These events
are triggered e.g. when the user does a mouse gesture, when the user clicks
a button, or between certain time intervals in the web application, etc. These
events are often de�ned as anonymous JavaScript functions.

The largest di�erence between Squirrel�sh where JIT is disabled and V8 is
that in Squirrel�sh the JavaScript code is compiled into bytecode instructions
which then are interpreted, while in V8 the JavaScript code is compiled into
native code which is later executed directly on the hardware instead of being
interpreted.

When V8 encounters a function, it checks if the function has previously been
compiled. If it has not been compiled, V8 decides what kind of function it is;
whether it comes from an eval call or from a normal function (or a JavaScript
segment). It also decides whether the function is to be compiled in a normal way,
or if it can be compiled in an optimized way, such that it will execute faster when
executed. Once the function is compiled, it is placed in a cache. If we encounter
the same function again, we do not need to re-compile it, but can execute the
already compiled code as it is found in the cache.
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In Figure 9.2 we see that for the 45 use cases, we re-use already compiled
code in the cache for 18 of 45 use cases, and typically re-uses less than 10% of
the compiled code in these cases. This can be understood from the behavior of
the web applications [56]; there are many JavaScript functions which are short
lived, many functions that are executed through calls to eval and many functions
that are re-de�ned as the web application executes. Therefore re-use of existing
JavaScript functions are rare. By looking at Figure 9.2, we observe that most of
the web applications that are able to utilize already compiled functions to some
degree are the web applications Gmail, Google (the search engine), YouTube and
BlogSpot which are from the vendor that made the Google V8 JavaScript engine.
(i.e., among the web applications, we see this clearly for all of the Google based
web applications).

Figure 9.2: The relative number of times a function is found in the cache of already
compiled functions.

In Figure 9.3 we see that the cost of compiling a JavaScript function versus the
cost of executing it is often eaten up by the cost of compiling the code, especially
since re-use of previously compiled code is rare.

In Figure 9.5 we show what kind of functions that are compiled. From the
�gure we see that lazy compiled functions are most common (i.e., over 80% of
the functions for most of the use cases are lazy), which shows the dynamicness
of JavaScript in web applications (since these can be executed from events).
Measurements have shown that they are often very small (in terms of number of

165



Figure 9.3: The time spent on compiling the various functions versus the time spent
executing the functions.

lines of JavaScript source), but not always. We notice Blogspot (1), where the
number of normal compilations is higher than the lazy compilations. This is due
to that the use case takes us to a page where we simply only register our name to
open an account, and where there is very little interaction, and few events calls,
and therefore very little JavaScript in the form of lazy functions.

9.3.2 TLS implementation

In V8, various parts of the code are compiled into stubs. If the JavaScript code
compiled is a function call, then this function is a candidate for speculation. Since
we know that there are many function calls in web applications, we perform
method level speculation. We base the sequential execution order on function
calls, since one key problem with TLS is to make sure that the parallel execution
follows the sequential semantics.

Initially, we initialize a counter realtime to 0. For each executed JavaScript
function, this value of realtime is increased by 1. We give the entry point of the
V8 JavaScript engine an unique id (p_realtime) (initially this will be p_0 ).
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During execution V8 might perform a JavaScript function call. We extract
the realtime value and the id of the thread that makes this call, e.g., p_0220
(p_0 calls a function after 220 instructions). We denote the value of the position
of this function call as function_order, which emulates the sequential time in our
program (Fig. 9.4). We check if this function has been previously speculated on
by looking up the value of previous[function_order]. previous is a vector where
each entry is organized by the function_order.

If the entry of previous is 1, then the JavaScript function has been speculated
unsuccessfully. If the value is 0, then it has not been speculated or has been
successfully speculated, and we call this position a fork point. This means that the
function is not going to be found in the cache, so this function will be compiled.
On rollbacks, we might encounter the same function call one more time, this time
it will already be in the cache. However, it will then not be executed speculatively
(i.e., as a thread).

Figure 9.4: We use the order that the functions are called in, to determine the order
in which the program would have been sequentially executed. This works in JavaScript
in a web applications setting, as there are multiple function calls. For instance, in a
simpli�ed example the JavaScript function f0, performs 3 function calls, f01, f02 and
f03. f01 performs two function calls, f011 and f012. Thus, we have created a speculation
tree from the function calls. If we traverse this tree from left to right, we get an order
in which the functions are called, equal to the order in which the functions would be
sequentially called, in order to uphold the sequential semantics during execution with
TLS. More speci�c: f0 at time p_1, f01 at time p_2, f011 at time p_3, f012 at time
p_4, f02 at time p_5, and f03 at time p_6. We denote how each function is ordered as
function_order.

If a function call is a candidate for speculation, we do the following af-
ter the function has been compiled; we set the position of the function previ-
ous[function_order] = 1. We save the state which contains the list of previously
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modi�ed global values, the list of states from each thread, the content of the used
global variables, and the content of previous.

We then allocate a thread from the threadpool, and use this for the function
call in V8, with an unique id. We copy the value of realtime from its parent
and modify the instruction pointer of the parent thread such that it continues
the execution at the return point of the function so the parent thread skips the
function call.

Now we have two concurrent threads, and this process is repeated each time a
suitable speculation candidate is encountered, thereby supporting nested specu-
lation. If there is a con�ict between two global variables or we make an incorrect
return value prediction we perform a rollback back to the point where the spec-
ulation started.

In V8, the global JavaScript variables are not compiled into the code that is
to be executed. Instead these variables are accessed from function calls in the
compiled code, such as StoreIC_Initialize and LoadIC_Initialize. This means
that the global JavaScript stack and the native code are accessed separately.
This further means, that we only need to save that part of the JavaScript stack,
when we are about to speculate. We save the stack in case of a rollback. When
we complete executing a function speculatively, we merge them into the stack
and detect possible con�icts and misspeculations, which would cause a rollback
to ensure the sequential semantics is not violated.

Restoration of the state on a rollback is faster than TLS in Squirrel�sh. We do
not need to re-compile the speculated function call (due to JavaScript behavior
in web applications), and we take advantage of JIT for V8 when we rexecute the
code natively, since the function call that is to be re-executed on a rollback is
already ready for execution inside the cache. However, rollbacks are relatively
rare for TLS in web applications, as we have shown in [63].

The reuse of compiled functions opens up a possibility when we speculate and
need to re-execute functions in case of a rollback. Since we do not add features
to the native code, and since all JavaScript global objects are accessed through
external functions, we do not need to re-compile the code upon re-execution. The
result is that the cost of doing rollbacks and re-executing functions decreases, in
terms of execution time, when we are using JIT as compared to an interpreted
JavaScript engine. For the implementation of TLS speculation in V8, we follow
what is done in [63] where we speculate aggressively on function calls.

Like the implementation in [63] we support nested speculation (i.e., we make
speculations from a speculated function), and therefore need to store states of
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the nested speculation, in case of a rollback. Also like previously seen, JavaScript
function calls only rarely return any value in a web application. Therefore we
use a return value prediction scheme like the "last predicted value" found in [36].

Figure 9.5: The relative time spent compiling the various function types. Normal func-
tions are compiled when the web page is loaded, eval is compiled when the JavaScript
code is executed using an eval() call, and lazy functions are compiled when they are
about to be executed.

9.4 Experimental methodology

In this study we have made the following experiments; we have measured the
execution time and the behavior of TLS+JIT on 45 use cases for 15 well-known
web applications, 4 use cases with Google maps, and 20 HTML5 web applications
from the JS1K competition, the top 10 entries from the original competition in
2010 and the top 10 entries from the 2013 competition (Figure 9.6). We have
selected these web applications since their workloads are signi�cantly di�erent
from one another. The selected web applications and short descriptions of the
use cases are presented in Table 9.2.

We have selected the web applications from the Alexia list [4] of most popular
web applications, and selected them based on the type of web application (such
as, a social network like Facebook, a blog service such as Wordpress and a mail
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Figure 9.6: The roadmap generated in Google Maps between the Google Headquarter in
Paolo Alto to the Microsoft headquarter in Redmond, Seattle (top right) and screenshot
of 3 random entries (within the top 10) from the JS1K competition in 2010 and 2013.

client like Gmail, etc). The use case behaviors are typically loading the front
page, then a login to the web application (such as a social network, and an on-
line auction or an on-line bookstore) and �nally searching for one of the authors
of this paper (if there is a search option available in the web application). We
base the use cases on our own experience with these web applications, and try to
perform the same actions on applications within the same realm, such that for
instance creating a use case that is identical by using identical search terms for
searching both the search engines Google and Bing.

For Google maps, we have 4 use cases. The �rst use case is the entry page
of Google maps (maps.google.com). In the second use case we have clicked to
locate where we are. In the third use case, we have made Google maps tell us
the road map between Google's headquarter in Paolo Alto and the Microsoft's
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headquarter in Redmond, Seattle. In the fourth use case, we have asked for the
road map between our university, Blekinge Institue of Technology, Karlskrona,
Sweden and the island of Cagliari, Italy.

The JS1K competition (http://js1k.com/) is an annual competition, where
the objective is to write a JavaScript application, where it is possible to use
WebGL, HTML5 or normal DHTML. However, the restriction is that the entry
must not be larger than 1 kilobyte of JavaScript code. We have evaluated the
top 10 entries in the �rst competition in 2010 and the top 10 entries in the
competition in 2013. In this way, we are able to see the development of HTML5
over 4 years.

Our Thread-Level Speculation is implemented in the V8 [30] JavaScript en-
gine, and the use cases have be executed within Chromium [31] from Google.
From [63] and in Figure 9.5 we see that web applications have a larger number of
JavaScript function calls. Therefore we speculate at the function level where all
data con�icts are correctly detected and rollbacks are done when con�icts arise,
and we support nested speculation.

We perform these experiments and measurements on an eight core computer
with 16GB of memory, where we adjust the number of enabled cores to 2, 4 or 8.
The execution time is the JavaScript execution time of the V8 JavaScript engine,
rather than the overall execution time of the whole web application. We execute
each use case 10 times, and use the median of the execution time for comparison.
The execution time is relative to the execution time on a Google V8 unmodi�ed
JavaScript engine where the JavaScript is executing sequentially.

To enhance reproducibility, we use a scripting environment [11] to both record
and automatically execute the use cases in a controlled fashion. Due to the nature
of web applications, we reduced the mouse driven interactivity, such as we do
for instance use not the mouse to navigate in Google maps. We realize that
this reduces the interactivity of this web application, and therefore also reduces
the number of lines of executed JavaScript code; however we do this to make
the use cases more reproducible. A detailed description of the methodology for
performing these experiments is found in [56]. Since we reduce the interaction,
such as the mouse gestures, this allows our results to be more applicable to other
platforms as well (such as laptops of di�erent screensizes, smartphones, game
consoles etc).
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9.5 Experimental results

9.5.1 The e�ects of TLS on 15 web applications

Figure 9.7: The speedup for 2, 4 and 8 cores on 45 use cases in 15 web applications.

One important observation from running web applications on V8 with TLS
enabled is that there is going to be a large number of function calls, where
each function call is small in terms of how many lines of JavaScript code that
is executed. It does not really mean much to the execution time whether they
are compiled into native code and executed or not, because the speedup of the
native execution is limited to a small number of JavaScript lines. It also means
that the dependencies between a certain executing part of the code, is limited, so
rollbacks are rare. These features make JIT suitable for TLS in web applications.

In Figure 9.7 we see the e�ects of running our TLS enabled version of the
JavaScript engine V8 on 2, 4 and 8 cores for 45 use cases on 15 di�erent web
applications.

We see that the average speedups for 2, 4 and 8 cores are 1.22, 2.9 and 4.7
respectively. If we look at the maximum and minimum speedup time, we see that
it is 2.0 and 0.02 for 2 cores, 4.3 and 1.0 for 4 cores and 6.5 and 2.9 for 8 cores.

These results indicate that you need more than 2 cores to take advantage of
TLS in combination with JIT in web applications. Based on the average and the
maximum and minimum measurements, the set up that gives the best return in
terms of number of cores and speedup is the 4 cores, as the distance between
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the maximum speedup and the average speedup is shorter for 4 cores than for 8
cores.

We can further see this as when we double the number of cores, the speedup
does not double. It becomes on average 39% faster going from 2 to 4 cores, and
25% faster going from 4 to 8. This indicates that the speedup would decrease
even further going from 8 to an even higher number of cores. It also indicates
that it could be quite su�cient with 4 cores to take advantage of TLS+JIT in
web applications.

Amazon (2) is twice as fast on 2 cores. We see this by looking at Figure 9.12
where we see that this use case has the largest maximum number of threads and
the largest average number of threads.. If we look at the use case in Table 9.2,
where we log into Amazon, which obviously does some sort of personalization in
terms of client side functionality (for instance certain �elds in the web application
are modi�ed) which increases the use of JavaScript. This gives us the possibility
to �nd many events / functions to speculate on, and we know from previous
results that there will be little dependencies between such functions, which in
turn allows us to speculate on many function calls. We also see that this is the
result of the sum of previous uses of Amazon, which forces Amazon to present
the web application according to the previous uses. This is interesting, as there
is less interaction in this use case compared to Amazon (3), but still a lot of
JavaScript interaction of setting up the page.

We see thatWikipedia has the slowest execution time with TLS+JIT. We can
understand this the following way; The JavaScript that is executed in this use
case is limited in terms of number of lines of JavaScript code. However, we do
not know that when we enter the web application, so we still try to speculate
aggressively. This means that we set up the entire TLS, with thread-pool etc,
for a use case where it turns out that there are few JavaScript function calls to
speculate on, which in turn results in that TLS hardly will be used. We can see
this in Figure 9.11. This is an interesting feature of TLS in web applications. It
needs to �nd a certain number of functions to speculate on, or the costs of setting
up the use for TLS will outweigh the gain in execution time by speculating.

If we look at the results of the execution on 4 cores, we see that for 43
of the use cases, the performance is doubled. The two use cases where it is
slower, are Bing (1) and Wikipedia (1). Both of these are the front page of the
web application, which is shown in Figure 9.12 to consist of a small number of
executing threads. This can be understood by that there is little interaction in
these use cases (Table 9.2) and that there is a need for some interaction to take
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advantage of JavaScript with TLS, as interaction allows us to execute more event
generated JavaScript functions.

For almost half of the use cases, the speedup is three folded with 4 cores. If we
look at the use cases, this applies in general to certain JavaScript intensive web
applications (such as Amazon, BBC, MSN, Imdb, Facebook). It also, in general
applies to use cases 2 and 3, where there is more interaction for the use cases.

For the BBC (3) use case the execution time is four times faster on a 4
cores than the sequential execution time , this seems to be the "news" page that
is rapidly updated thanks to JavaScript with "news tickers". These are quite
independent of one another which makes speculation successful.

When using 8 cores, we are able to at most six double the execution speed
for the use cases Facebook, Imdb, MSN and Youtube. Again, this improvement is
found in both use case 2 and 3 (except for Facebook and Youtube) None of the
applications are able to have a speedup over 7 or 8 times the sequential execution
speed with 8 cores.

These observations show that increased interactivity of the web application
increases the speedup with TLS, as this will be controlled by an increased number
of events, which in turn increases the number of function calls. We also see that
the speedup and number of cores ratio is the highest with 4 cores, this can be
understood by that there is a limit to the number of events/function calls in a
web application.

Figure 9.8: The speedup for 2, 4 and 8 cores on the set of top 10 entries of JS1K for
2010 and 2013.
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9.5.2 The e�ects of TLS on 20 HTML5 demos

For HTML5 applications, there is a smaller number of function calls. Therefore,
the speedup is lower with TLS. In addition, following the execution model of
JavaScript in web applications, each function does not represent many lines of
JavaScript code, therefore it will not be executing for a long period of time (which
is the reason why we need to speculate on many JavaScript functions). One
interesting feature is that even though it is event driven, part of the execution is
more suitable for JIT compilation. These results show that both TLS and JIT
can be successfully combined.

In Figure 9.8 we have measured the execution time on a set of HTML5 demos
from the JS1K competition on 2, 4 and 8 core computers. We see that the average
speedup for 2 cores is 0.79, the average speedup for 4 cores is 2.11 and the average
speedup for 8 cores is 2.98. The maximum and minimum speedups for 2 cores
are 1.65 and 0.50, for 4 cores they are 2.94 and 0.41 and for 8 cores the speedups
are 4.46 and 2.34.

One interesting observation is that the JS1K entries consist of one large event,
a loop which is executed repeatedly. In web applications this loop is commonly
initialized with the events setInterval or setTimeout. In such a competition the
function called for this event will be quite large, as this does most of the work
and contains most of the JavaScript code. This indicates that this large event,
which is a function call, could create a rollback quite early during the execution.
This means that during the execution, we do not in general speculate on function
calls made by this event, which in turn reduces the e�ect of running it in parallel.
We can see this from the speedup, in general, we need more than 2 cores, to
take advantage of this. We are usually able to get a speedup with more than 4
cores, but we see that the speedup if we compare the 4 cores to the 8 cores is
limited. This indicates that we are not able to take advantage of a large number
of function calls, which again could be caused by a relatively small code (i.e.,
few speculations) and that there is one large speculation which we are unable to
speculate on e�ciently.

We also notice that this large event driven loop, has dependencies, as it con-
sists of most of the code, and that each iteration of this loop is more dependent
of each other. This does in turn mean that this function call is likely to cause a
rollback, which in turn reduces the e�ect of TLS in these web applications.

Since the JavaScript code is one kilobyte, there is a limit to how many func-
tions we can speculate on. However, regardless of the fact that the codebase
of these applications is small, we are able to have an on average 2.12 and 2.98
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speedup on 4 and 8 core. This indicates that there is a potential to speculate,
and that there is little dependency between the functions.

9.5.3 The e�ects of TLS on 4 Google maps use cases

The use cases for Google maps have limited user interaction, as we want them to
be reproducible. Therefore the JavaScript execution is limited. This means that
most of the work is done on the serverside.

In Figure 9.9 we have measured the speedup of 4 cases from Google maps on
a 2, 4 and 8 cores. The average speedup with 2 cores is 1.13, the average speedup
on 4 cores is 3.54 and the average speedups with 8 cores are 4.14. Likewise, if we
look at the minimum and maximum speedup with 2 cores we �nd it to be 1.03
and 1.27 with 2 cores, 3.41 and 3.72 with 4 core and 4.10 and 4.17 with 8 cores.

Figure 9.9: The speedup for 2, 4 and 8 cores on the set of the 4 use cases for Google
maps.

Since the potentials of TLS in Google maps (Figure 9.9) are similar for the
various use cases, this indicates that the use cases from a JavaScript point of view
often are performing the same thing, as the computation of the route between two
destinations is done on the serverside, and the JavaScript of the web application
is about drawing the route on the screen. As we said in Section 9.4 we have no
user interaction of moving the map in Google maps to make the use cases easier
to reproduce. This gives less user interaction, and reduces the potential of TLS
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in Google maps. This makes for instance the speedup with 4 cores and 8 cores
close to one another, as the reduced interaction decreases the potential of TLS.

If we compare the 15 web applications, the 20 HTML5 demos and the 4
Google maps use cases, we see that they are signi�cantly di�erent types of web
applications. However, if we look at for instance web applications from Google
(such as Gmail, Google, Blogspot, Yotube and Google maps) we see that their
speedups are similar. This indicates that web applications have a lot of functions
calls (due to events in the web application) for all the web application types,
which in turn shows that TLS is advantagous for all of the web applications.

If we compare the results of TLS on the 20 HTML5 demos in Figure 9.8, these
web applications have a lower speedup with TLS than the 15 web application in
Figure 9.7 and the 4 use cases with Google maps in Figure 9.9. We can understand
this the following way; the HTML5 web applications for the JS1K competition
are naturally only one kilobytes in size. This means, that there is a limit to
the number of functions de�ned in the JavaScript, which in turn reduces the
number of speculations. In comparison with the 15 use cases of very popular web
applications, the web application size of the JavaScript code is much larger than
one kilobyte. For instance, in Figure 9.10 we see the number of lines of JavaScript
source code that are compiled in a lazy manner for Gmail. In addition in the
HTML5 demos, there is often one single function call which consists of much of
the workload of the execution. This function call, could cause a rollback, and
will not be used in the future for more speculations. This reduces the number of
speculations even further.

A surprising observation is that 8 cores is not much faster than 4 cores. This
could be understood by the fact that there is a limit to the number of speculations.
For instance, we see that there is less speculation in the HTML5 demos than in
the 15 web applications and in the 4 use cases of Google maps.

We could explain the behavior in the following way; it executes faster with a
higher number of cores, but it also takes more time to initialize the threadpool
with an increased number of cores. In Figure 9.11 we have measured the time
it takes to initialize the threadpool and the time it takes to execute the threads.
We see that the time it takes to set up the threadpool increases as the number
of cores increases.

In Figure 9.12 we see the maximum and average number of threads executing
concurrently during execution. If we measure the average maximum number and
the average number of threads and the distance between them we �nd them to be:
204, 123 and 81 threads. This suggests that even though we compile the functions
to be executed, the functions that are executed speculatively are relatively short
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Figure 9.10: The number of lines of JavaScript code for the various calls to the compiler
in V8 for the web application Gmail.

in terms of number of executed instructions. There is an average di�erence of 40%
between the maximum number of threads and the average number of threads.

Deviations are BlogSpot (3), Wikipedia(1) and MSN (2). For Blogspot(3) and
Wikipedia (1)) the number of speculations are very small, 5 and 17 respectively.
We have discussed the BlogSpot (3) case where there is a limited amount of
JavaScript execution. Likewise, in Wikipedia (1), we know from [63] that the
front page of Wikipedia has a limited amount of JavaScript interactivity. For
MSN (2), the number of speculations are relatively close to the average number
of speculations for the other use cases, but several of the functions are very large in
terms of instructions to be executed. This makes the average number of functions
executing low compared to the maximum number of functions executing. These
functions have a low number of writes, which in turn makes them easy to speculate
on. This could be caused by theMSN use case since it has several "tickers" where
the functionality in terms of JavaScript is long enduring, which again creates
a large number of functions which are suitable for speculation. As we see in
Figure 9.7 this creates one of the largest speedups which are over 6 times faster
than the sequential execution time of V8.
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Figure 9.11: The thread pool initialization time as propotion of the total execution
time.

9.6 Conclusion

We have presented the �rst implementation of Thread-Level Speculation in com-
bination with Just-in-time compilation (TLS+JIT) with a method-level approach
running on a set of popular web applications, the Google maps web application
and �nally a set of HTML5 demos. We have evaluated it on 45 use cases in 15
web applications, 20 HTML5 demos, and 4 use cases for Google maps, and made
the experiments on 2, 4, or 8 cores on a dual quadcore computer.

Our results show that TLS can be successfully combined with JIT, and that
the programming model employed in the web applications makes TLS appropriate
for taking advantage of multicore hardware. We also see that there are features
in Google's V8 that are very useful for TLS, that we need more than 2 cores to
successfully take advantage of TLS+JIT in web applications, and that 4 cores
yield an average speedup of 2.9, and 8 cores an average speedup of 4.7. For 20
HTML5 demos, the speedup is on average 2.11 for 4 cores and 2.98 on 8 cores.
In Google maps, the average speedup is 3.54 on 4 cores and 4.17 on 8 cores. This
indicates that the largest gains in terms of the ratio between the execution time
and the number of cores is 4.
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Figure 9.12: The maximum and the average number of threads during execution.

In summary, we have presented the �rst implementation of TLS and JIT
combination which run on the JavaScript web application, and our results show
signi�cant speedups without any changes of the JavaScript source code at all. We
believe that TLS+JIT is a very promising approach to enhance the performance
of JavaScript in web applications.
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Table 9.2: The web applications, and a description of the use cases, that are used in
the experiments.

Application Description use case #1 use case #2 use case #3

Google Search engine Load the frontpage of
www.google.com

Type in the name
of one of the au-
thors of this paper (al-
low it to automatically
load), and click search

Type in the name of
one of the authors,
and click image search

Facebook Social net-
work

Load the frontpage of
www.facebook.com

login with an existing
user account

Search for one of the
authors of this paper

YouTube Online video
service

Load the frontpage of
www.youtube.com

Search for one of the
authors of this paper

View a video from the
previous use case

Wikipedia Online com-
munity driven
encyclopedia

Load the frontpage of
www.wikipedia.com

Search for one of the
authors of this paper

Start to create an ar-
ticle of the previous
search term

Blogspot Blogging so-
cial network

Load the front page
of www.blogspot.com

(be registered on as a
Google user)

Click "New Blog"
(But end it by click-
ing "Cancel")

Click "View Blog"

MSN Community
service from
Microsoft

Load the front page of
www.msn.com

Click "News" Click on "Pictures"

LinkedIn Professional
social net-
work

Load the front page of
www.linkedin.com

Login with an existing
user-account

Search for one of the
authors of this paper

Amazon Online book
store

Load the front page of
www.amazon.com

Login with an existing
user-account by click-
ing "Sign-in"

Search for one of the
authors of this paper

Wordpress Framework
behind blogs

Load the front page of
www.wordpress.com

Click on "Get
Started"

Click on "Discover
WordPress"

Ebay Online auc-
tion and
shopping site

Load the front page of
www.ebay.com

Search for one of the
authors of this paper

Click on "register"

Bing Search en-
gine from
Microsoft

Load the front page of
www.bing.com

Type in the name of
one of the authors
of this paper (allow
it to load automati-
cally), and click search

Type in the name of
one of the authors,
and click "Images"

Imdb (Inter-
net movie
database)

Online movie
database

Load the front page of
www.imdb.com

Search for the name
of one of the authors
of this paper (allow
it to load automati-
cally), and click search

Click on "See all
birthdays"

Myspace Social net-
work

Load the front page of
www.myspace.com

Click on the search
symbol, and type in
the name of one of the
authors of this paper

Click on "Discover"

BBC News paper
for BBC

Load the front page of
www.bbc.co.uk

Search for one of the
authors of this paper

Click on "News"

Gmail Online web
client from
Google

Load the front page of
mail.google.com

Login with an existing
user-account

Search for mails writ-
ten by one of the au-
thors, by typing in
their mail address.
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Chapter 10
Paper IX

Performance Enhancement and Power Usage of Thread-
Level Speculation onWeb Applications for Embedded Devices
with the V8 JavaScript Engine

Jan Kasper Martinsen, Håkan Grahn, Samir Drincic, and Anders
Isberg

Submitted to journal for publication

10.1 Introduction

JavaScript is a dynamically typed, object-based scripting language with runtime
evaluation, where the execution is done in a JavaScript engine [30, 108, 72].
Fortuna et al. [25] show that there is a large potential for parallism for JavaScript
in web applications with speedups up to 45 times compared to the sequential
execution time. However, JavaScript is a sequential programming language.

One transparent manner to take advantage of parallism with parallel hardware
is Software Thread-Level Speculation (TLS) [91] which have been demonstrated
both for JavaScript benchmarks [66] and web applications [63].
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In [63] we presented a method-level TLS implementation in Squirrel�sh/We-
bKit with an on/o� speculation principle in the Squirrel�sh JavaScript engine
without Just-in-time compilation, where a single misspeculation turns o� the
speculation for that function. We later extended this technique with a heuristic
which adapts how aggressively we speculate [48].

In this paper we develop Thread-Level Speculation with Google's JavaScript
engine V8 with Just-in-time compilation and measure its performance and power
usage on a Sony Xperia Z1 mobile phone with a quadcore CPU. We evaluate the
performance on 3 use cases each for 15 web applications, then on 4 di�erent use
cases for Google maps, and �nally on 20 di�erent web applications for the JS1k
(http://www.js1kb.org) competion.

10.2 Implementation of TLS in Google's

V8 JavaScript engine

Web applications execute a large number of events, which in turn are de�ned as
JavaScript functions.

When V8 encounters a function, it checks if the function has previously been
encountered. If it has not been encountered, V8 decides what kind of function this
is; if it comes from an eval call, from a normal function (or JavaScript segment)
or a lazily compiled function. In addition, it tries to decide whether the function
is to be compiled in a normal way, or if it can be compiled in an optimized way.
Once the function call is compiled, it is placed in a cache, in such a way, that if we
were to encounter the same function once more we execute the already compiled
function.

If the JavaScript code that is going to be compiled is a function call, then this
function is a candidate for speculation. Since there are many function calls in
web applications, we perform method level speculation, and base the sequential
execution order on the order of the function calls.

Initially, we initialize a counter realtime to 0. For each executed JavaScript
function, this value of realtime is increased by 1 We give the entry point of the
V8 JavaScript engine an unique id (p_realtime) (initially this will be p_0 ).

We extract the realtime value and the id of the thread that makes this call,
e.g., p_0220 (p_0 calls a function after 220 bytecode instructions). We denote
the value of the position of this function call as function_order, which emulates
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the sequential time in our program (Fig. 10.1). We check if this function previ-
ously has been speculated on by looking up the value of previous[function_order].
previous is a vector where each entry is organized by the function_order.

If the entry of previous is 1, then the JavaScript function has been speculated
unsuccessfully (i.e., this function call has led to a rollback). If the value is 0, then
it has not been speculated, and we call this position a speculation point. That
means that the function is not going to be found in the cache.

Figure 10.1: We use the order that the functions are called in, to determine the order
in which the program would have been sequentially executed. This works in JavaScript
in a web applications setting, as there are multiple function calls. For instance, in a
simpli�ed example the JavaScript function f0, performs 3 function calls, f01, f02 and
f03. f01 performs two function calls, f011 and f012. Thus, we have created a speculation
tree from the function calls. If we traverse this tree from left to right, we get an order
in which the functions are called, equal to the order in which the functions would be
sequentially called, in order to uphold the sequential semantics during execution with
TLS. More speci�c: f0 at time p_1, f01 at time p_2, f011 at time p_3, f012 at time
p_4, f02 at time p_5, and f03 at time p_6. We denote how each function is ordered
as function_order

We do the following after the function has been compiled; we set the position
of the function calls
previous[function_order] = 1. We save the checkpoint state which contains the
list of previously modi�ed global values, the list of states from each thread, the
content of the used global variables, and the content of previous.

We then create a new thread (or, take a thread from the thread pool) for
the function call in V8, with a unique id. We copy the value of realtime from
its parent and modify the instruction pointer of the parent thread such that it
continues execution at the return point of the function so the parent thread skips
the function call.

Now we have two concurrent threads, and this process is repeated each time a
suitable speculation candidate is encountered, thereby supporting nested specula-
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tion. If there is a con�ict between two global variables or an incorrect return value
prediction we perform a rollback to the checkpoint point where the speculation
started.

In V8, the actual JavaScript global variables are not compiled into the code
that are to be executed, instead these variables are accessed from function calls
in the compiled code, such as StoreIC_Initialize and LoadIC_Initialize. This
means, that the global JavaScript stack, and the native code are accessed sep-
arately. This further means, that we only need to save part of the JavaScript
stack, when we are about to speculate. We therefore save the stack in case of a
rollback. Restoration of the state, if we encounter a rollback is not very costly,
as we do not need to re-compile the speculated function call. In fact the function
call that is to be re-executed on a rollback is already ready for execution inside
the cache. However, rollbacks are relatively rare, as we see in [63].

Like the implementation in [63] we support nested speculation, and therefore
need to store states of the nested speculation, in case of a rollback. Like previ-
ously seen, JavaScript function calls rarely return any value in a web application,
therefore we use a return value prediction scheme, like the "last predicted value"
found in [36].

The largest di�erence between Squirrel�sh where JIT is disabled and V8 is
that in Squirrel�sh the JavaScript code is compiled into bytecode instructions
which then are interpreted, while in V8 the JavaScript code is compiled into
native code which is later executed directly on the hardware.

The reuse of compiled functions opens up possibilities when we speculate and
need to re-execute functions in case of a rollback. Since we do not add features
to the native code, and since all JavaScript global objects are accessed through
external functions, we do not need to re-compile the code upon rollbacks in TLS.
The result is that the cost of doing rollbacks and re-executing functions decreases
in terms of execution time, when we are using JIT as compared to an interpreted
JavaScript engine such as Squirrel�sh. This suggests that we could signi�cantly
improve the execution time for TLS, as we reduce the costs of rollbacks. For the
implementation of TLS speculation in V8, we follow what is done in [63] where
we speculate aggressively on function calls.
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Figure 10.2: The execution time for 45 use-cases from very popular web applications.

10.3 Experimental Methodology

We measure the e�ects of TLS on 15 well known [4] web applications, where we
have created 3 use cases for typical functionality, then we measure the e�ects of
TLS on 4 use cases for the Google map web application and �nally we measure
the e�ects of TLS on 20 entries in the JS1k competition, the top 10 from 2010
and 2013, which use HTML5 extensively.

In the Amazon web application, for the 1th use case we go to the front page,
in the 2th use case we login with our personal account, and in the 3th use case we
search for the name of one of the authors of this paper. The use cases progressively
consist of the previous use cases, for instance the 3th use case, starts with the
1th, then the 2th use case before we complete it with the 3th use case.

In Google maps, in the 1th use case we load the front page, in the 2th,
we locate our position and in the 3th and 4th use case we �nd the road map
between Google's headquarter in Paolo Alto and Microsoft headquarter in Seattle
respectively.

In the JS1k, the competitors submit one kilobyte of JavaScript sourcecode.
We have measured the e�ects of TLS on the 10 top entries from 2010 and from
2013 these applications take advantage of features in HTML5.
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The measurements are made on a Sony Xperia Z1 phone equipped with a
2.4Ghz quadcore CPU, and 4GB main memory. We have measured the JavaScript
execution time in the JavaScript engine V8, and compared the TLS enabled
version against the sequential version.

In addition we have measured the power usage with a battery simulator con-
nected to a Sony Xperia Z1 phone, with a program which allowed us to instrument
and measure the power usage.

10.4 Experimental Results

10.4.1 Improved execution time

Figure 10.3: The execution time for 4 google maps use-cases.

In Fig. 10.2, Fig. 10.3 and Fig. 10.4 we see that TLS almost always improves
the execution time for JavaScript in web applications even though the applica-
tion types are very di�erent from one another. We notice that the e�ects of
TLS, in terms of reduction of execution time is increasing with more interaction
(for instance in Fig. 10.2, Facebook(3) executes faster than Facebook(2) and Face-
book(2) executed faster than Facebook(1)). This indicate that as we eleborate the
use cases with more interaction, the e�ects of TLS becomes more apparent. The
relatively small increase in execution time between the use cases also indicates
that we could have an even better speedup with a larger number of cores.
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Figure 10.4: The execution time for 20 HTML5 demos

For Google maps, we see that the e�ects of TLS are almost the same for all of
the use cases. This indicates that the executed JavaScript is the same for all of
the use cases, and that most of the functionality in Google maps (i.e., for instance
calculating the distance between two points) is executed on the serverside.

For JS1K, we do not �nd the same execution time for TLS as for the other
results, but there is obviously not the same amount of JavaScript code (since these
programs are at most 1 kilobyte in size). The 3th application from 2010 and the
4th application from 2013 are slower than the rest. Both of these applications use
sound intensively (A syntheziser and a version of the game TetrisTM, which both
use the functionality of HTML5 to play sounds). This slows down the execution
time of TLS, as intensive access to the sound chip seems to make the cores halt.

10.4.2 Power usage

In Fig. 10.5 we have measured the power usage of Facebook when running with
TLS and when running without TLS. We see from the results that TLS version
executes much faster (more than twice as fast), but uses at most twice as much
power.

In Fig. 10.6 we have measured the power usage of Google maps when running
with TLS and when running without TLS. We see from the results that the
TLS version executes much faster (roughly three times as fast), but uses at most
almost twice as much power.
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Figure 10.5: The power usage for Facebook running on the Sony Xperia Z1 smartphone
both in parallel and sequentially

In Fig. 10.7 we have measured the power usage of JS1K when running with
TLS and when running without TLS. We see from the results that the TLS version
executes slightly faster, and uses the lowest power compared to the sequential
execution og the use cases.

While the maximum power usage is higher for TLS than the sequential version,
the integral of the power usage is almost 10% lower for Facebook, over 40% lower
for the HTML5 application and is 40% higher for TLS with Gmaps. We can
understand this from the limited interaction for Gmaps use case. Therefore, we
use a lot of power to set up the TLS system, while not being able to fully take
advantage of it.

10.5 Conclusion

Thread-Level Speculation in the JavaScript engine V8 is suitable also for smart-
phones, as we both get a signi�cant speedup and are able to reduce the overall
power usage on a Sony Xperia Z1 phone.
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Figure 10.6: The powerusage for Google maps.

Figure 10.7: The power usage for a HTML5 use-case.
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