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Abstract

A well-known combinatorial optimization problem is the graph partitioning
problem. Since solving it optimally requires very much time, we have to
settle for approximated methods. One such method is the multilevel k-way
partitioning scheme. The overall idea is the following: The size of the graph
is reduced during a process known as coarsening, where smaller and smaller
graphs are made. Then a k-way partition is found from the much smaller
graph and the graph and the partition is projected back to the original size.

In this master thesis, we study a central part of the multilevel k-way
partitioning scheme, coarsening. In order make smaller and smaller graphs
we use a technique known as matching. We introduce a new matching
heuristic, global greedy heavy edge matching and perform a large number
of experiments comparing it to other matching heuristics.

Our results include the discovery of two new partition vectors for the
graph partitioning archive [29], and that using global greedy heavy edge
matching generally produces better results than already existing matching
heuristics.
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1 Preleminaries

1.1 Graph theory

Graph theory is the mathematical study of structures called graphs. The
term graph is a bit confusing in relation to mathematics, because it refers
to both graph of a function (i.e. a plot) and a kind of networks structure

Informally, a graph consist of a number of points, and a number of lines
between these points. We refer to the points as nodes 1, and the lines as
edges.
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Figure 1: The leftmost image is a graph where the circles represent the
nodes, and the lines represent the edges. The image in the middle is a
weighted graph, where the number inside the node is the node-weight, while
the number close to the edge is the edge weight. In the rightmost image we
have marked the degree of two of the nodes.

Formally a graph G consist of two finite sets: a set N(G) of nodes and
a set E(G) of edges, where each edge is associated with a set consisting of
two nodes known as endpoints.

There is also an extension of G, known as a weighted graph, where a
weight (usually a integer) is associated with each node, edge or both.

Graph can also be grouped into types, for instance a graph is said to be
connected, if there is a path from any nodes to all the other nodes in the
graph.

We also define a function w(node) and w(edge) to return the weight of
edges and nodes.

We define a nodes degree to be the sum of the weight of the edges
that connects a node to its incident nodes. We also define the set of nodes
incident to a node as the set of neighbours of a node.

1A common name for these points is also vertices, however we will avoid to use this
name, since this term is also used in geometrical objects.
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1.2 Graph partitioning problem (GPP)

The GPP is defined as follows; Given a unweighted graph G = (N,E),
partition N into k subsets, N1, N2, . . . , Nk such that Ni ∩Nj = ∅ for i 6= j,
|Ni| = |N |/k and

⋃
iNi = N and the number of edges of whose incident

nodes belong to different subsets is minimized.
A partition of G, is typically represented by a partition vector P of length

|N |, such that for each node n ∈ N , P [n] is a number (integer) in the range
between 1 and k, indicating the partition which n belongs to.

Given a partition vector P of a graph G, the number of edges whose
incident nodes belongs to different partitions is known as the edge-cut.

The load imbalance is defined as the relationship between the ideal
partition weight, the sum of node-weight divided by k and the heaviest
partition Pmax. More formally we define load imbalance as;

load imbalance = b1− |N |/k|Pmax|
× 100c (1)
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Figure 2: Example of a partitioned graph with edge-cut = 9. The nodes are
numbered from 1 to 9. Below the graph is the partition vector, where each
node belongs to either partition 1 or 2.

The GPP belongs to a problem class of combinatorial optimisation prob-
lems known as NP-hard [10]. NP-hard basically means that there doesn’t
seems to be any algorithms with polynomial run-time for solving this prob-
lem optimally, rather it must be done by searching through all the possible
combinations (brute-force) do find the optimal solution.

1.3 Applications of GPP

The GPP has applications in many real life problems. Such applications in-
clude scientific computing, task scheduling and VLSI design. Some examples
are domain decomposition for minimum communication mapping in parallel
execution of sparse linear system solvers, mapping of spatially related data
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items in large geographical information systems on disk to minimize disk
I/O requests, and mapping of task graphs to parallel processors.

1.4 Adjacency matrix

One way to represent the graph is through a so called adjacency matrix.
An adjacency matrix is a special kind of square matrix, where the rows and
columns are labeled by graph nodes.

Lets AM be such a matrix, if the matrix element at AMn1,n2 6= 0 then
there is an edge (adjacency) between the nodes n1 and n2. An example of
such a matrix can be seen in Figure 3

1 2

54

7 8 9
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3

Figure 3: The matrix to the left is the adjacency matrix of the graph to the
right.A value of 1 at position AMi,j indicates there is an edge width node i
and j as endpoints.

One way to store adjacency matrices, are with the compressed row stor-
age format (CRS) [16]. The format is organized the following way;
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rowpointer: 0,1,3,4,7,11,12,15,17

columnindex:2,1,5,5,5,7,8,4,8,4,4,5,9,8,6

Figure 4: The relationship between an adjacency matrix (leftmost) and the
graph (rightmost) with the CSR format (middle).

Figure 4 illustrates the relationship between the adjacency matrix, the
graph and the CRS format. If we select node 4 from the rightmost graph,
we see that its adjacency information is found in column 4, where each
of the 9 rows determine which nodes of the graph node 4 is adjacent to.
Looking at the CRS format, the same information is found by accessing
the columnindex from rowpointer[4 + 1] to rowpointer[4] (i.e. the values
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5, 7, 8). Looking at the rightmost graph we see that this are the nodes that
are adjacent to the node 4.

1.5 Organization of thesis

This thesis is divided into five chapters; a general introduction, a review
of already existing graph partitioning algorithms, a special form of graph
partitioning algorithms, known as as multilevel k-way partitioning,which
includes, our new heuristics, a series of numerical experiments where we
examine the properties of the new algorithms, and last the conclusion of our
work and ideas for future research.
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2 Previous work

2.1 Introduction

Creating a program that solves the GPP optimally isn’t very hard. One
can simply search through all the possible partitions to find the optimal
one. However, there is a catch. The number of possible partitions grows
exponentially with the size of the graph, so this might take very much time.

There have been developed GPP methods that find suboptimal partitions
in a reasonable amount of time, but where the edge-cut and load imbalance
can be quite far from the optimal partition.

In this chapter, we present three classes of algorithms for solving GPP;
Algorithms that creates partitions from scratch, algorithms based on im-
provement of existing partitions and so-called multilevel algorithms.

2.2 Algorithm for solving GPP from scratch

Two simple methods and building blocks of the multilevel GPP method,
which we treat extensively, are greedy partitioning and the recursive bisec-
tion scheme.

2.2.1 Greedy GPP algorithm

One simple and fast method for solving GPP is to use the greedy algorithm
proposed by [8].

Initially all nodes are set to available. The algorithm starts by selecting
an available node from the graph with the minimal degree. This node is
placed in a list. A node is then removed from the list, marked as unavailable
and placed in a given partition. Next, the incident available nodes of this
node are added to the list and then we repeat the procedure, removing
a node from the list, marking it as unavailable, placing it into the given
partition, and adding its available nodes to the list, until the appropriate
number of nodes are in the given partition.

1 2 3

4 5 6

7 98

2 1 2 3

4 5 6

7 98

5 1 2 3

4 5 6

7 98

3

4

8

Figure 5: Three stages of the greedy partitioning algorithm.

There have also been done some work on creating variants of the greedy
partitioning [3], for instance by being more selective when adding incident
nodes to the list.
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2.2.2 Recursive bisection scheme

Much work have been invested into a version of the GPP where the graph
is partitioned into 2, known as bisection. Bisection is well studied [2], since
we can by a scheme known as recursive bisection extend the bisection so it
can create k partitions.

The idea is the following; We start off with a graph G which we want to
divide into k partitions. G is first bisected into two parts, Gleft and Gright.
We repeat the process above on Gleft and Gright until the graph has been
divided into k partitions.

It is obvious that simply dividing the graph repeatedly into equal parts
will not work for all ks. For instance, we have problems if k is an odd
number. The solution presented is a variant of the one suggested in [5].
The idea is to allow Gleft and Gright to have different size as in equation 2
and 3.

|Gleft| = b|N | × 2
k c (2)

|Gright| = |N | − |Gleft| (3)

Figure 6 is an example of recursive bisection, where k is an odd number.
The graph has 133 nodes, which we want to divide into 5 partitions. We
start by dividing 2/5 of the 133 nodes into Gleft and 3/5 of 133 nodes into
Gright. Next step is to divide Gleft and Gright, this time k is not 5, but
the numerator of the previous fraction, such that the right and left size of
Gleft will be 1/2, while the left and right size of Gright will be 1/3 and 2/3.
At this point we have to finished left and right of Gleft and the left side of
Gright, since there is no point to continue dividing by 1. The right part of
Gright is splitted into two new partitions, resulting in a total of 5 subsets,
completing our partitioning task.

133

2/5 3/5

53 80

26

1/3

54

2/3

27

26 27

27

1/2

1/21/2

1/2

Figure 6: The tree from the recursive bisection scheme, where the number
of nodes are the number above the circle and the size of the subset relative
to the node above, is next to the circle

There is some obvious properties of recursive bisection, for instance given
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that the graph is unweighted, then the difference between the heaviest and
lightest partition will be at most 1 node.

Recursive bisection has been used quite extensively for GPP. Some meth-
ods based on the recursive bisection method are; Recursive coordinate bi-
section [32], scattered partitioning [24] and recursive graph bisection [25]
It has also been shown that recursive bisection can produce partitions that
can be quite far from an optimally partitions [26] with respect to edge-cut
and load imbalance

2.3 Iteratively improving an initial partition

Both greedy partitioning and recursive bisection might return partitions
that are far away from optimal solutions. Since we are not certain that a
partition is the optimal solution, we say that it is in a local optima. The
optimal partition is known as the global optima, and in case the partition
is the optimal solution, we also say that global optima also is in a local
optima. Different partitions, have different local optimas and the idea of
the iteratively improving algorithms is to move the partitions from one local
optima to a lower local optima.

Below we briefly presents algorithms that improves an existing partition
such as a simple improvement algorithm and Kerninghan-Lin algorithm.

2.3.1 Simple improvement algorithm (SI)

One simple way to go from one local optima to a lower local optima is the
following; Go through all the nodes by random. If two incident nodes are in
different partitions and swapping them leads to decrease in edge-cut, then
a swap is made.

2.3.2 Kerninghan-Lin (KL)

KL [21] takes the SI algorithm a step future. SI only swap nodes, if there
is an immediately decrease in the edge-cut. However, allowing swapping of
nodes, that increase edge-cut, might lead us to a move that decreases the
edge-cut later on, or to use the terminology above, it might increase our
ability to climb from one local optima to a lower local optima. This is the
idea behind KL.

For simplicity we present the algorithm as a bisection. We have two
lists that contains the nodes from partition. We sort the lists based on the
decrease in edge-cut swapping this node will have on the edge-cut, such that
nodes that decreases the edge-cut the most is stored on top of the list.

The algorithm starts by selecting the node that decreases edge-cut most,
swap it, update the list and the edge-cut and the swap is recorded. The
algorithm continues until the lists are empty. Then we go through the list of
edge-cuts and select the edge-cut that is smallest, the swaps are made until
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this edge-cut is reached and the procedure above is repeated once more.
The algorithm terminates when we are unable to decrease the edge-cut any
future. KL has been modified into several variants, for instance improvement
of runtime [9] and to handle k way partitioning [12].

2.3.3 Other iterative methods

We also note that there are several other iterative methods for improving
existing partitions, popular methods include genetic algorithms [15], simu-
lated annealing [7], ant colonization [6] and tabu search [11].

2.4 Multilevel paradigm

Our work is based around so-called multilevel algorithms. The multilevel
scheme is based on the following, the smaller an instance of a problem is,
the faster it is to solve it.
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Figure 7: The three phases of the multilevel algorithm (figure from [19])

Multilevel GPP consists of three phases, coarsening, initial partitioning
and uncoarsening. First a smaller and smaller graph is generated by com-
bining nodes and edges. Then a partition of the significant smaller graph is
found. Finally the partition is projected and refined until a partition of the
original size is found.
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2.4.1 Coarsening

During coarsening, a sequence of smaller graphs Gi = (Ni, Ei) is constructed
from the original graph G0 = (N0, E0), such that |Ni| < |Ni−1|. This con-
tinues until the number of nodes is equal or smaller than a certain threshold
t.

In order to reduce the size of the graph we combine nodes and edges. This
is done with a technique from graph theory known as matching. Formally
a matching is defined the following way;

A matching of a graph is a subset M of the edges, where all of the
endpoints (i.e. the nodes) are distinct. An example of a matching can be
seen in Figure 8.

Figure 8: An example of a matching of a graph, where the grey fields indicate
that the edges are a part of a matching.

A matching heuristic is the order in which we add edges to M . For
instance the size of the matching is determined by how and in which order
the edges are selected. as seen in Figure 9.

Figure 9: Example of two different types of matchings. We see that which
order the edges are selected does matter for the size of the matching.

We define that if |M | = |N |/2, then the matching is a so called perfect
matching. Not all graphs have a perfect matching, for instance not all
graphs have an even number of nodes and the topology of the graph might
prevent us from making a perfect matching. For instance in Figure 8, the
number of nodes are 9, and therefore a perfect matching cannot exist.
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A matching such that it is not possible to add more edges is a maximal
matching. Note that different matching heuristics, as seen in Figure 9,
yields different maximal matchings.

Matching in the multilevel setting is used to create smaller graphs. We
combine the two endpoints of a matched edge into a new node, known as a
multinode. The matched edge is removed from the graph (or ’hidden’ inside
the multinode). The weight of the new multinode is the sum of the weight
of the two endpoints. This means that if the node-weight was uniformly set
to 1 to begin with, it could after the first coarsening level vary between 1
and 2.

The set of neighbours of the multinode will be a combination of the
incident nodes of the two endpoints that forms the multinode. If both the
endpoints are incident to the same node, then the edge from the multinode
will be the sum of edgeweight of both these edges. Such an example can be
seen in Figure 10, where node 4 and 8 are the endpoints in a matched edge.
Both node 4 and 8 are incident to node 5. Therefore the edge-weight of the
edge between the multinode formed by 4 and 8 and the multinode formed
by 5 and 3 will be the sum of the edges between node 4 and 5 and 8 and 5.

weight=2

weight=2
weight=2

weight=2

weight=2

1 2

2

3

34

4

5

5

6

7 8 9

1

Figure 10: Example of matching, and how nodes and edges are combined

Unlike nodes, edges can be combined several times during a coarsening
level. We found out that given that the edge-weight is initially uniform,
then the weight of an edge after one coarsening level could be from 1 to 4(

4

2 2

Figure 11: Example of how the edge-weight can be between 1 and 4

In Figure 11), the four endpoints create two multinodes and since they
are incident to each other, the edge-weight between the two multinodes will
be 4. This seems to be the maximal increase in edge-weight, given that the
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edge-weight is uniform2

2.4.2 Initial partitioning

Once we complete the coarsening phase, we find an initial partition. This
can be done a number of ways, for instance there is the possibility to coarse
until the number of nodes is equal to the number of partitions. However,
we discovered that it is quite expensive to coarse until the number of nodes
are this small, since the size of M decreases as the number of coarsening
levels increases. We also found out that the weight of the nodes was very
inhomogeneous, so initially the load imbalance was quite high.

We use a variant of recursive bisection, known as multilevel recursive
bisection (which will be introduced at the end of this chapter) where a
variant of greedy partitioning [19] is used for the bisection.

.

2.4.3 Uncoarsening

The phase in the multilevel algorithm where we project the partition vector
successively from Gi, Gi−1 · · ·G0 is known as uncoarsening.

1
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1 2 3
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Figure 12: How the partition is remapped during the uncoarsening.

In Figure 12 we see the uncoarsening process. The multinode is separated
into two nodes and these nodes are placed in the same partition as the
multinode.

Since we added node and edge-weight when combining nodes into multin-
odes, we know that when we project the partition back to its original size,
the edge-cut and load imbalance can be no worse than the initial partition.

But as we expand the graph from Gi, Gi+1 . . . G0, we can for each un-
coarsening level try to decrease the edge-cut and load imbalance of the
graph. This process is known as refinement, which is related to the iterative
improvement of the partition discussed in the previous section.

2If there exist a larger possible weight, we would be happy to hear about it.
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We will present one refinement schemes, greedy refinement (GR) but
before we present GR, we introduce some key concepts and definitions. A
graph Gi has a partition vector Pi. For each node n ∈ Ni we define the
neighbourhood of n as the set of the partitions adjacent to n. If n is only
adjacent to one partition, then we say that n is an interior node, else we say
that it is a boundary node.

We formalizes this through external degree (ED) and internal degree
(ID).

Partition 1

Partition 2

Partition 3

1

4

7

5 6

2 3

8 9

Figure 13: External and internal degree of node 5.

In Figure 13 we see the ED and ID of node 5. The node has two incident
nodes that are in partition 1, one incident node that is in partition 3, and
one that is in partition 2. From this we introduce the concept of gain.

For instance, moving node 5 from partition 2 to partition 1 has a gain
equal to gain[5]1 = ED[5]1 − ID[5] = 2− 1 = 1

Partition 1

Partition 2

Partition 3

1

4

7

5 6

2 3

8 9

Figure 14: Moving node 5 to partition 1 to decrease the edge-cut

In Figure 14 we see the result of moving node 5 to a neighbouring par-
tition. The gain is 1, which means that we have reduced the edge-cut by
one, which can be verified by comparing Figure 13 and Figure 14.

However we note that the movement of node 5 caused partition 1 to
contain one more node than the other partitions. We cannot allow movement
that decreases the edge-cut, while increasing the load imbalance. If we kept
on moving nodes that gave a positive gain, we would end up with a edge-cut
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that was 0, however, we would also end up with one partition containing all
the nodes, and two empty partitions.

This is the motivations for the balancing condition, which constrains
the movement of nodes such that the load imbalance doesn’t increase. Let
PW be a list of length k, which contains the weight of each partition. Set
Wmin = 0.9|N |/k and Wmax = 1.3|N |/k3.

A node can be moved from partition a to partition b only if;

PW [b] + w(n) ≤Wmax (4)

PW [a]− w(n) ≥Wmin (5)

The greedy refinement (GR) algorithm is a variant of the SI algorithm
presented in section 2.3.1. Then the algorithm works the following way; We
start by selecting randomly one of the boundary nodes. This node is moved
to the partition such that the gain is maximized, while not violating the
balancing condition. Once a node is moved, we are not allowed to move
it again during the same iteration. If moving a node doesn’t increase the
edge-cut, but improves the load imbalance then it is also moved.

1. ED[node]b > ID[node] and ED[node]b is maximum among all the
partitions that the node is adjacent to.

2. ED[node]b = ID[node] and that PW [a]− PW [b] > w(node).

More formally a node is moved if either one of the conditions above are
fulfilled. After one node is moved, the ED and ID for its incident nodes are
updated.

The motivation for using this heuristic instead of a more advanced im-
provement algorithm such as KL is the following; KL is able to climb out
local minimas because of its list of moves. That allows us to move entire
clusters of nodes across the partition boundary. However, in the multilevel
context we are not moving nodes, but entire clusters of nodes (multinodes).
That means that the ’lookahead’ in algorithms like KL is less important,
because we are moving nodes that are likely to be moved anyway.

A refinement method that increases GR capabilities of climbing out of
local optimas, is global Kernighan-Lin (GKLR) [18]. The idea is the same
as for GR, only that we add the moves to a list as in KL, such that we are
allowed to make moves with negative gain.

3We multiply with 1.3 to allow some imbalance, since by allowing some imbalance
improves our ability to climb out of local optimas. We multiply with 0.9 to be sure than
none of the partitions contains too few nodes.
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2.4.4 Multilevel recursive bisection

Algorithms such as Kernighan-Lin, genetic graph partition, simulated an-
nealing, tabu search and recursive bisection all have multilevel extensions
[1, 22]. Below we briefly present the multilevel variant of recursive bisec-
tion (MLRB) and then we devote an entire chapter to the multilevel GPP
algorithm which our work is based around, the multilevel k-way graph par-
titioning (MLKP).

The name multilevel recursive bisection could be misleading4. One could
be lead to think that the graph is coarsen, then recursive bisection is used
to find a partition of the smaller graph, then it uncoarsend to the original
size. However, this is in fact very similar to MLKP which we will consider
in the next chapter.

Level 1

Level 2

Level 3

Level 4

Figure 15: An illustration of the multilevel recursive bisection algorithm.

The multilevel step is preformed on each level of recursive bisection three
(Figure 15). Before the graph is bisected into Gleft and Gright, we coarse
the graph, find a bisection of the much smaller graph, and project it back
to Gleft and Gright. Then Gleft and Gright are coarsed, both the graphs are
bisected into a left and right side each, the solution is projected back to the
left and right side of both Gleft and Gright until we have k partitions.

4A better name could perhaps be recursive multilevel bisection
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3 Multilevel k-way partitioning (MLKP)

In MLKP there is only one multilevel step.First the graph is coarsened, a
partition of the much smaller graph is found and the partition is projected
back to the original size.

Compared to MLRB, this approach is faster, since we are only doing one
multilevel step, rather than one for each bisection. Another property that
was ’discovered’ was that this process also gives a more global view of the
partition process. For instance the graph is coarsened from G0, G1, · · ·Gi.
Then during the initial partitioning, one do not move nodes to different
partitions, but rather clusters of nodes, and together with refinement dur-
ing the uncoarsening one could argue that this gives a better view of the
partitioning process than MLRB.

In this section we present six different matching heuristic, random match-
ing, heavy edge matching, heavy edge minimization matching, gain vertex
matching, local greedy heavy edge matching and global greedy heavy edge
matching, where global greedy heavy edge matching is our contribution.

3.1 Coarsening phase

During each coarsening level, nodes and edges are combined successively.
This is repeated until the number of nodes in the coarser graph is less than
a coarsening threshold.

In this section we look at how this coarsening threshold is computed,
why and how we set a matching constraints and introduce the concept
of matching ratio.

3.1.1 Coarsening threshold

For each coarsening level, we start by creating a maximal matching, then a
smaller graph is constructed from this matching. This process is repeated
until we reach a certain threshold (Equation 6) or we are unable to reduce
the size of graph after the matching with less than 10%.

coarsening threshold =

{
x = |N |

40 × log2(k) x > y

y = 20× k x < y
(6)

From equation 6 we see that the threshold is determined by the number
of partitions we wish to find, and that x is valid when k is small. We also
see that the threshold increases as the k increases, which is natural, since
we want the coarser graph to be larger if we are to partitioning it into more
partitions.

We also note that we only check if the number of nodes reaches the
threshold once for each coarsening level. This is obviously to save some
execution time. If we where to coarse the graph until the number of nodes
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where exactly equal to the threshold then we would need to test each time
we matched an edge. This also means that we always end up with a graph
at the coarser level that has less or equal number of nodes compared to the
threshold.

In addition, we exit the coarsening loop, if the decrease in nodes from
one coarsening level to another is less than 10%.

3.1.2 Matching constraint

To avoid problems with nodes with too high node-weight, for instance nodes
with a weight higher than |N |/k (the ideal weight of one partition) we in-
troduce a matching constraint.

matching constraint =
|N |

coarsening threshold
(7)

As seen in Equation 7 we only add an edge to a matching, if the sum of
its endpoints are less than equation 7.

3.1.3 Matching ratio

The matching ratio describes the reduction in nodes between two coarsening
level, formally it is defined as in [4].

matching ratio =
|Ni|

|Ni+1| × 2
(8)

Where the numerator is the number of nodes after i coarsening iterations,
and the denominator number of nodes after i + 1 coarsening iterations. If
for instance the matching ratio is equal to 1, then there have been a perfect
matching.

3.2 Matching heuristics

Matching heuristics are rules on how we select edges to be included in a
matching. The most common way to add an edge to a matching is the
following; We select an unmatched node and then one of it unmatched inci-
dent nodes. These nodes are then endpoints in an edge. The motivation is
obvious, since there are fewer edges than nodes.

3.2.1 Random Matching

First presented in relation to the multilevel GPP in [14], random matching
(RM) is a simple, but fast way to create a maximal matching. First a node
n1 is selected by random, then we by random select one of its unmatched in-
cident nodes n2. Although named ”random” matching, it is a quite powerful
heuristic, since it uses the topology of the graph to create matchings. We
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could easily imagined a random method which was less powerful in terms of
reducing the size of the graph quickly, where two nodes where selected, and
if they where adjacent, then a matching is produced.

Visit Order :1,3,6,4,5,9,7,8,2

1

2

6

2

32

5

3

Figure 16: Random matching

RM have a complexity equal to O(E).

3.2.2 Heavy Edge Matching

Originally introduced in [19] heavy edge matching (HEM) is a matching
heuristic that aims to reduce the edge weights of the coarser graph. it is
likely that if we select the edges with heavy weight, then the coarser graph
will have smaller edge-weights, which ultimately could lead to a smaller
edge-cut when partitioning the coarsest graph [17].

The heuristic works in the following way; A node n1 is selected by ran-
dom5 Then the incident node n2 of n1 is chosen such that the edge-weight
between n1 and n2 is maximized over all its unmatched incident nodes.

Visit Order :1,3,6,4,5,9,7,8,2

1

2

6

2

32

5

3

Figure 17: Heavy edge matching

First assume that the graph initially have an uniform edge-weight. For
the coarsening level, RM and HEM will perform identically. We note that

5METIS graph partition package, have a heuristic where a node is not chosen by
random, rather from the number of incident nodes it has.
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for the rest of the coarsening levels it is likely that HEM will have a lower
matching ratio then RM. To understand why, consider the following exam-
ple, where the edge-weight is not uniform.

When two nodes n1 and n2 are matched, then the number of neighbours
of n(1,2) is equal or larger than either n1 or n2. 6. If we select the unmatched
incident node that connects n1 with a maximal edge-weight, then either n1

or the selected incident node is multinode. This means that the combining
the two nodes will result in a node with a large set of neighbours, and this
obviously means a lower matching ratio.

We note that HEM has a complexity of O(E), which is equal to RM.
This does not mean that the HEM and RM is equal in terms of execution
time. When a node is picked by random, then RM matches only the first
unmatched incident node of the node it just picked, while HEM must search
through all its incident nodes in order to determine which one have the
heaviest edge weight.

3.2.3 Heavy Edge Matching Minimization

In some applications, nodes and edge-weights are initially uniform. During
the first coarsening level, it is likely that when a node is selected, it will have
several incident nodes that connects it with a maximal edge-weight. The
problem however, how do we select among these?

Heavy edge matching minimization (HEMM) is our suggestion to solve
this problem, by defining a rule for selecting among incident nodes with
maximal edge weight.

Visit Order :5,3,6,4,1,9,7,8,2

2

6

2
2

2

32

5

3

3

2

Figure 18: Heavy edge matching minimization

The heuristic is identical to HEM, except when a node have more than
one unmatched incident node that is connected with a maximal edge-weight.
Then we select one of these incident nodes that have the lowest number of
neighbours.

6Except for a special case where the graph consists of two nodes, where they are
connected by one edge
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The motivation behind the heuristic is to increase the matching ratio
for HEM. From [4] it known that using HEM decreases the matching ratio,
compared to other heuristics. HEMM tries to increase the matching ratio,
while persevering the properties of HEM.

The complexity of the method is O(E). In practice, there is no differ-
ence between the execution time of HEM and HEMM, since the number of
incident nodes are placed inside a variable.

3.2.4 Gain Vertex Matching

1 2 3

4

5 6

7 8 9

Visit Order :6,2,5,1,8,3,9,4,7

Figure 19: Gain vertex matching

Gain vertex matching (GVM) was proposed in relation to graph partition
in [4]. Unlike HEM, GVM minimizes degree weight rather than the edge-
weight.

The heuristic works in the following way, first a node n1 is selected by
random, then the unmatched incident node n2 is selected such that the
degree of the multinode n(1,2) is minimized. The complexity of GVM is
O(N × E), but by precalculating the degree of each node it can be quite
fast. An interesting digestion, HEMMIN performs identical to GVM during
the first coarsening iteration.

3.2.5 Local Greedy Heavy Edge Matching

Inspired by [27], the idea behind local greedy heavy edge matching (LGHEM)
is the following: In HEM we select a node n1 by random, then the unmatched
incident node n2 is selected such that it is connected to n1 with the maximal
edge weight. The edge between n1 and n2 is the heaviest unmatched edge
that is incident to n1, but it might not be the heaviest edge of n2 as seen in
Figure 20.

From this observation, it is possible to develop a method that search
locally in the node neighbourhood finding two unmatched nodes which are
incident to each other with the mutually same maximal edge weight. First
we define nt as a temporary node. Now we select by random, an unmatched
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Figure 20: We see that the unmatched and incident to node 8 with the
highest edge-weight is node 5. However, node 5 is incident to node 4 with
an even higher edge-weight than the one between node 5 and node 8.

node n1, and set nt = n1. As for HEM, we select the incident node n2 that
connects nt with the maximal edge-weight. Let this edge-weight be equal to
w(nt,n2). We do the same procedure for n2, we find its incident node n3 that
connect n2 with the heaviest edge-weight, and store this inside w(n2,n3). If
w(n2,n3) = w(nt,n2) then we add the edge with n2 and n3 as endpoints to a
matching. If not, then nt = n2 and we continue the search until we find to
edges with the mutually maximum edge weight.
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Figure 21: We start by picking node 8. We set nt to node 8. Then we
find node 8s incident unmatched node that connects node 8 to the maximal
edge-weight, which is node 5. Is node 8 the incident unmatched node that
connects node 5 to the maximal weight? No, the edge-weight between node
4 and node 5 is heavier than the edge-weight between node 8 and 5. Then
we set nt to node 5 and continue to search until we find two nodes that are
incident to each other with the mutually the same maximal edge-weight. As
seen from the figure this is node 4 and node 7

Will there always be two unmatched nodes with the mutually maximal
edge-weight? Yes indeed! No matter what node that are selected, it have
either a unmatched incident node that connects to the selected node with a
maximal weight, or have no unmatched incident nodes at all. The incident
node can either have an incident node connected to it, with the same max-
imal weight as the first node, or it can have one connected with a higher
weight. Since there only are a finite number of nodes and edges, we will
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sooner or later run into a node that have the same maximal weight, or a
node that only have one edge (in this case, we know that this is the maximal
weight).

LGHEM is more complicated than HEM, and have a much higher com-
plexity, O(E2).

3.2.6 Global Greedy Heavy Edge Matching

My master thesis supervisor [4] suggested that LGHEM, is almost the same
as searching thought the edges for the heaviest edge, than search through
the nodes. We name this method Global Greedy Heavy Edge Matching
(GGHEM) which is sort of an extension to LGHEM. In LGHEM, we select
the nodes in a greedy manner from a random selected node. In GGHEM,
we do not select randomly, we simply

1
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37
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5 3

3

2 3

4 5 6

7 8 9

1

Figure 22: GGHEM matching heuristic

sort the edges descending based on their weight. Let Es be a list con-
taining all the edges sorted by their edge-weight. this edge to a matching.

The method works the following way, we select an edge from Es, this
edge can either be a matched or unmatched. If it is matched, we simply
skip to the next edge in Es. If it isn’t a matched, the we first record the
endpoints n1 and n2, and include it to the matchings. Now we need to
update edge every edge that has one either n1 or n2 as a endpoint, and set
them to unmatched. We continue until we reach the end of Es. Since we
need to sort edges, the complexity of this heuristic is O((E)×log2(E)×(E)).

3.2.7 Implementation of GGHEM

The multilevel graph partitioning algorithm that we use is based around the
nodes rather than edges. More specific, the datastructure is based on CRS.
From Figure 23 it is clear that inserting GGHEM into the CRS datastructure
where the edges are implicit given can be a bit of a challenge. Since the edges
are unnumbered and stored twice, it isn’t particular easy to sort efficiently.

To cope with this, we create a list where we store each edge, or more
specific we store the two endpoints and the edge-weight. This list must be
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3 4

rowindex:       0,2,5,8,10

columnindex: 2,3,1,3,4,1,2,4,2,3

values:            1,3,1,7,4,3,7,5,4,5

CSR datastructure

3

5

47

1

Figure 23: The example of the CSR structure where the edges are implicit
given

created from the CRS datastructure for each coarsening level.
We define a list columnused, where initially all is set to available. We

start by the two leftmost numbers in rowindex (i.e. 0 and 2). As seen in
Figure 23 the size of the set of neighbours of node 1 is 2 − 0 = 2. We go
throught the incident nodes of node 1 in columnindex, if they are set to
available in columnused we create a new edge as seen in Figure 24

rowindex:       0,2,5,8,10

columnindex: 2,3,1,3,4,1,2,4,2,3

values:            1,3,1,7,4,3,7,5,4,5

1 2

3 4

CSR datastructure

3

3

5

47

1

Edges: 

endpoints edge-weight

1

1

2

3

1

Figure 24: Creating edge based structure from the CRS structure

When the list of edges is completed, the list is sorted with the introsort
algorithm [23], so edge edges with a maximal weight is in the top of the list,
while edges with a minimum weight is at the bottom of the list. Since the
algorithm are to begin with are node based, stores a matching as seen in
Figure 25.

We are now using edge based datastructure, but the reconstruction of
the graph is still based on matchingvector. That means that we need to
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Figure 25: matching vector

update the matchingvector, when selecting from the edges list.
We start by selecting an edge from the top of the list. There can be three

different cases, either one of endpoints in the edge is in matchingvector, one
of the endpoints is in the matchingvector or both of the endpoints are in the
matchingvector.

In the first case, we insert each of the endpoints in the matchingvector,
matchingvector[endpoint1] = endpoint2 and matchingvector[endpoint2] =
endpoint1.

The second case, we need to find out if the other unmatched endpoint are
without unmatched incident nodes. If it has no unmatched incident nodes,
then matchingevector[unmatchedendpoint] = unmatched endpoint.

For the third case, we simply skip to the next edge. The algorithm
terminates once we reach the end of the list, or we have processed all the
edges.

3.3 Initial partitioning and refinement

For initial partitioning MLRB is used, while for refinement GR is used. We
note that there also is used a variant of GR, to improve the load imbalance
(with the cost of increasing edge-cut).
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4 Experiments

For testing the matching heuristics, we have inserted LGHEM and GGHEM
into the well known graph partitioning software Metis 4.0 [20]. For initial
partitioning, we use MLRB from the same software, and for refinement we
use greedy refinement heuristic.

In the following sections we examine what effect these modifications had
on edge-cut, load imbalance and execution time.

Finally we compare our partitioning results with the graph partitioning
archive [29], where we discover two partitions with the smallest known
edge-cut by using LGHEM and GGHEM as the matching heuristic.

4.1 Measuring execution time

One way to measure time on a computer is to count them number of clock
cycles since the program started. For instance, assume that we want to
measure how much time a certain method call takes. Then we first mea-
sure the amount of clock-cycles used before the method is called, and the
amount of clock-cycles used after the method is called. We subtract the
two measurements (i.e. stop - start), and divide them with frequency of
the microprocessor to get the time in milliseconds. We found that it wasn’t
always as accurate as we wanted (a milliseconds represent an eternity for a
modern computer), so we did the following; We measured it 8 times, and
presented the average time.

4.2 Datasets

For performing the experiment, we have selected a serie of 34 graphs (Table
1) from the graph partitioning archive [29].

4.3 Comparing HEM with LGHEM

In this section we compare what consequences changing HEM with LGHEM
will have on the final edge-cut and the load imbalance. Since LGHEM is
more complex than HEM, we also measure what effect the change had on
the execution time.

4.3.1 Comparing the final edge-cut when using the HEM match-
ing heuristic and LGHEM matching heuristic

In Figure 26 we see the edge-cuts of the 16-way, 32-way and 64-way partitions
of the graphs in Table 1. The edge-cuts are presented relative to the edge-
cuts we would get if we used HEM to produce the coarser graph. For instance
if one of the histogrambars in Figure 26 are below the baseline, then using
LGHEM creates a lower edge-cut than using HEM.
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graph name No. of Nodes No. of Edges

add20 2395 7462

data 2851 15093

3elt 4720 13722

uk 4824 6837

add32 4960 9462

bcsstk33 8738 291583

whitaker3 9800 28989

crack 10240 30380

wing nodal 10937 75488

fe 4elt2 11143 32818

vibrobox 12328 165250

bcsstk29 13992 302748

4elt 15606 45878

fe sphere 16386 49152

cti 16840 48232

memplus 17758 54196

cs4 22499 43858

bcsstk30 28924 1007284

bcsstk31 35588 572914

fe pwt 36519 144794

bcsstk32 44609 985046

fe body 45087 163734

t60k 60005 89440

wing 62032 121544

brack2 62631 366559

finan512 74752 261120

fe tooth 78136 452591

fe rotor 99617 662431

598a 110971 741934

fe ocean 143437 409593

144 144649 1074393

wave 156317 1059331

m14b 214765 1679018

auto 448695 3314611

Table 1: Graphs used in the experiments

We found that using LGHEM creates lower edge-cut for 61% of the cases.
We have also found that if LGHEM is used, and the edge-cut is lower, then
it is on average 6% lower. If using HEM creates a lower edge-cut, then it’s
on average 2% lower.
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Figure 26: The edge-cuts of the 16-way,32-way and 64-way partitions of the
graphs in Table 1

From Figure 26 we see that the 16-way and 32-way partitions of finan512
both has a more than 70% lower edge-cut. We also see that the 64-way
partition of the same graph has a 20% higher edge-cut.

We have examined this case closer, by creating 2-way,4-way,8-way,16-
way, 32-way,64-way,128-way and 256-way partitions of finan512. Since it
turns out that only the 16-way and 32-way partitions have a 70% lower edge-
cut(i.e. there isn’t a property of the graph that makes LGHEM superior to
HEM), we examine these two cases closer. We also examine the 64-way
partition, where the edge-cut was 20% higher.

We have two ideas to what causes the low edge-cut: Either we are unable
to refine the coarser graph produced by HEM, or there are some properties
of the coarser graph such that we are unable to make an initial partition
with a low edge-cut.

We could imagine that the GR heuristic was unable to move any node
that would decrease the edge-cut without violating the balance condition.

In Figure 28 we see the edge-cut of the initial partition. We see that
for finan512 the difference between the edge-cut when the coarser graph is
produced by LGHEM and HEM, is larger than in Figure 26.

We have studied the 16-way and 32-way partitions of finan512 closer. In
Table 2 we see that the coarser graph produced by HEM gets more refinend
than the one produced by LGHEM. Then it is clear that the reason for the
big difference between the edge-cuts when using LGHEM and HEM isn’t
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graph name matching heuristic k iEC EC edge-cut decrease

finan512 HEM 16 20832 3432 83%

finan512 LGHEM 16 5599 1296 76%

finan512 HEM 32 33788 8401 76%

finan512 LGHEM 32 9969 2592 74%

Table 2: 16-way partitions for finan512. iEC denotes the initial edge-cut,
and EC is the edge-cut after refinement. We also measure the decrease in
edge-cut between the initial partition and the final partition

caused by lack of refinement.
We found that one could explain the difference between LGHEM and

HEM by looking at the coarser graph for the 16-way and 32-way partitions
of finan512. In 3 we look at the number of edges (|E|) and the sum of weight
of the edges (

∑
w(e) ∈ Ei).

graph name matching heuristic k |Ei|
∑
w(e) ∈ Ei

finan512 HEM 16 20594 197474

finan512 HEM 32 21404 200402

finan512 LGHEM 16 7786 147068

finan512 LGHEM 32 10734 162000

Table 3: 16-way partitions for finan512

It turns out that if LGHEM is used, then the coarser graphs have (on
average) 50% less edges and that if we sum the edge-weights, it is 26%
less than if the coarser graphs was produced by HEM. This does explain
why the edge-cuts of finan512 is smaller for initial partitions. Since there
coarser graphs have smaller edge-weights and and less edges(Table 3). It is
also likely that it is easier to find a partition with a lower edge-cut. This
explains why the edge-cut is smaller for the final partition, since we see in
Table 2 that the partitions got the same amount of refinement.

But it does not explain why it is 70% smaller. The coarser graph pro-
duced by HEM has more edges and nodes than LGHEM. That means that
it is not straight forward to compare the graphs. To try to compare how
uniform the edge-weights are distributed for the coarser graphs, we used a
coefficient of variation [31]. That is, we divided the standard deviation of
the edge-weight by the average edge-weight and found out that this value
is somewhat higher for the coarser graph produced by HEM than LGHEM.
That means, that the edge-weight is less uniformly distributed for the coarser
graph produced by HEM.

Then it is probably easier for the MLRB to create a partition with a
low edge-cut when the coarser graph is produced by LGHEM since it has
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fewer edges and the weight of these edges are more uniformly distributed. It
could be that if the edge-weights are non-uniform, this could be utilized to
create a smaller edge-cut, for instance by making the nodes that has edges
with a low edge-weight as boundary nodes. However, this would require our
bisection heuristic to be more advanced than greedy partitioning.

We have seen that the 16-way and 32-way partitions of finan512 have a
70% lower edge-cut when LGHEM produces the coarser graph. But why did
the 64-way partitioning create a 20% higher LGHEM for the same graph?
Below we investigate the 64-way partitioning of finan512 and try to explain
how it differs from the 16-way and 32-way cases.

The initial edge-cut is smaller for LGHEM than for HEM. However after
refining, this changes, and the edge-cuts get 18% lower for HEM.

This means that the reduction comes from the refinement. When HEM is
used then the edge-cut is decreased by more than 73% while when LGHEM
is used then the edge-cut is decreases by more than 59%. Even though the
edge-cut initially is 19% lower (see Figure 28) for the coarser graph produced
by LGHEM , the decrease of edge-cut during refinement is so much higher
when the coarser graph is produced by HEM, so we end up with an edge-cut
that is 18% lower.

We found that the reason why we were able to refine this much more was
because the coarsest graph HEM produced had on average 39% more inci-
dent nodes. At the same time the average edge- weight was only 2% higher
and the sum of edges where 10% higher for the coarsest graph compared to
LGHEM.

It is reasonable that the edge-cut initially got higher when HEM pro-
duced the coarser graph. however since the number of incident nodes are
much higher it gives us great flexibility during refinement. It is quite likely
that this is the reason why the 64-way partition of finan512 created a lower
edge-cut for the 64-way partition when HEM was used.

From this we can answer the question why the edge-cut was so much
lower for the 16-way and 32-way partitions. When examining the number of
edges in the coarser graph, we see from Table 4 that the number of edges in
the coarser graph produced by HEM is much higher for 16-way and 32-way
partitions (over 50%) by only 10% higher for the 64-way partition.

graph name matching heuristic 16-way 32-way 64-way

finan512 HEM 20594 21404 22442

finan512 LGHEM 7786 10734 20264

Table 4: The number of edges for the coarsest graph where LGHEM and
HEM have been used as a matching heuristic.

We know from the previous chapter, that the number of nodes in the
coarser graph are determined by the coarsening threshold. We have found
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that the number of nodes is over 50% higher for the coarser graph for the
32-way partition than for the 64-way partition. Recall from Equation 6 in
Chapter 3 that this is impossible. This means that during two coarsening
levels, the size of the graph was reduced by less than 10%. This can be seen
by the number of coarsening levels in Table 5

graph name matching heuristic 16-way 32-way 64-way

finan512 HEM 8 8 15

finan512 LGHEM 15 13 14

Table 5: The number coarsening levels were LGHEM and HEM have been
used as a matching heuristic.

Why we were unable to reduce the graph with 10% for the 16-way and
32-way partitions, when we could do that for 64-way partitions? We found
that the answer lies in the matching constraint (see Equation 7). For the 16-
way and 32-way partitions we are allowed to make multinodes with higher
weight than for the 64-way partition. Combining nodes with high weight
created nodes with a larger number of neighbours, which again decreased
the matching ratio.

The result is that we are unable to reduce the size of the graph is the
following; we end up with a graph where the sum of edges is higher than if
use the LGHEM matching heuristic. This again results in a higher initial
edge-cut. For the 64-way partition where HEM was used, the edge-cut was
initially higher, but it had a larger number of incident nodes and one more
coarsening level so it was able to refine more efficiently then LGHEM.

However, since we were unable to use more than 8 coarsening levels, the
number of incident nodes really wasn’t really much larger than if we used
LGHEM. We noticed that we were able to refine the graph where HEM
was used some more than for LGHEM, however even though it was able to
refine the graph more efficiently, it only had 8 uncoarsening levels, which
also meant less refinement, than if LGHEM was used.

To prove that this was the cause of the problem, we did the following.
For finan512 we allowed the reduction to be less than 10% for the 16-way
partition. Then HEM doesn’t escape the coarsening loop before it reaches
the coarsening threshold. This took 37 coarsening levels, but we ended up
with a result that had a lower edge-cut than if we used LGHEM (similarly
to the 64-way partition).

4.3.2 Comparing the load imbalance when LGHEM and HEM is
used as matching heuristics

From recursive bisection, we know that if the node-weight is uniform, then
the difference between two partitions will be at most one node. Since we are
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Figure 29: The 16-way 32-way and 64 way load imbalance relative to cases
HEM

using matching constraint to make sure than node-weights will be (almost)
uniform, we expect the graph to have a low imbalance regardless of what
matching heuristic we use.

From Figure 29 we see that the load imbalance of the final graph is almost
the same when using LGHEM or HEM. We measure the load imbalance
relative to HEM as above, which means that if the bars are below the baseline
then LGHEM creates a lower load imbalance than HEM.

We have measured the load imbalance, and found out that for 70% of
the cases using LGHEM creates a lower load imbalance. If using LGHEM
gives a smaller load imbalance than HEM, it is on average 2% smaller. If
using HEM gives a smaller load imbalance than LGHEM it is on average
1% smaller. Since the difference between load imbalances are between 1%
and 2%, we could argue that the difference in load imbalance is minimal.
However, we could argue that partitions where LGHEM have been used as
the matching heuristic tends to have slightly smaller load imbalance.

In Figure 29 the load imbalance for the 16-way partitioning of memplus
is 18% lower when LGHEM is used. For the same dataset, but the 64-way
partitioning, the load-imbalance is 23% lower when HEM is used.

We know that some initial load imbalance can be helpful during the
refinement, in order to be more flexible in moving nodes to escape local
optimas. For this experiment we allow a load imbalance up to 5%. However,
if it is over 5% we must take steps to try refining the load imbalance with
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the expense of an possible increase in edge-cut.

graph name matching heuristic iEC maxweight of initial partition

memplus LGHEM 16639 1186

memplus HEM 16982 1126

Table 6: The initial edge-cut and the initial maximal weighted partition for
the 16-way partition of memplus where LGHEM and HEM has been used
as the matching heuristic.

From Table 6 we see that 16-way initial partitioning of memplus. Since
both using LGHEM and HEM yields the same number of coarsening levels
(8) and since the difference between the number of nodes between the two
coarser graph is less than 5% we think that it is fair to compare the load
imbalance of the two initial partitions. We see that initially LGHEM pro-
duced partitions that has a lower edge-cut and a higher load imbalance. We
found out that for both the datasets, we needed to improve the balance on
the expense of edge-cut, however for the partitioning that were produced by
LGHEM we needed to do it for five times, instead of four as for HEM.

graph name matching heuristic EC max partition

memplus LGHEM 15845 1458

memplus HEM 15149 1685

Table 7: The final edge-cut and the maximal weighted partition of memplus
where LGHEM and HEM has been used as the matching heuristic.

From Table 7 we see the result. The partition where LGHEM was used
has 14% lower load imbalance. We see also that the extra improvement
of balance had a price, since the edge-cut increased for LGHEM. For the
64-way partition we see that partitions where HEM was used creates a load
imbalance that is 18% lower than if LGHEM is used. Unlike the case above,
we called the method the same number of times to try to balance it.

Unlike the case for 16-way partition, equal amount of iterations are spent
to decrease the load imbalance with the expence of edge-cut. From Table
we see that the initial load imbalance is lower for LGHEM than for HEM.

However, we see that the edge-cut for the final partition, LGHEM has
now a much higher load imbalance than for HEM.

Normally we measure the load imbalance as the relation between the
maximal weighted partition and the ideal weighted partition |N |/k (Equa-
tion 1 in chapter 1). However, in this case this did not give us any clues to
why the LGHEM heuristic had a much higher load imbalance than for the
final partition. Neither did standard deviation or comparing the minium
weighted with the maximum weighted partition.
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graph name matching heuristic iEC max initial partition

memplus LGHEM 21091 300

memplus HEM 23105 317

Table 8: The initial edge-cut and the maximal weighted partition for the
64-way partitioning of memplus where LGHEM and HEM has been used as
the matching heuristic.

graph name matching heuristic EC max partition

memplus LGHEM 19849 485

memplus HEM 20894 399

Table 9: The final edge-cut and the maximal weighted partition of memplus
where LGHEM and HEM have been used as the matching heuristics.

In Figure 30 we have done the following; First we have gathered weights
of the initial partitions, then we have sorted them from the smallest to the
largest. Finally we plotted them as points. A lot of ”straight” lines indicates
that the partition is well balanced.

 260

 270

 280

 290

 300

 310

 320

 330

 340

 350

 0  10  20  30  40  50  60  70

memplus

LGHEM
HEM

 260

 270

 280

 290

 300

 310

 320

 330

 340

 350

 0  10  20  30  40  50  60  70

memplus

LGHEM
HEM

Figure 30: The weight of the partitions where LGEM and HEM have been
used

From x = 1 · · · 40 we see that the points almost overlap each other.
However from x = 48 · · · 64 we can see weakly that HEM is somewhat better
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balanced than LGHEM. We found that this could explain why the load
imbalance is 20% lower for HEM for the 64 partition.

4.3.3 Comparing the execution time of HEM and LGHEM

When selecting a node HEM must obviously search through all its un-
matched incident nodes to find the one that is incident with the maximal
edge-weight. LGHEM is an extension of HEM, and must do the same, but
in addition, when the incident node with the heaviest edge is found, we must
search through all of the incident nodes in order to determine if the nodes
are mutually connected to the same maximal edge-weight. In addition, if
the incident node have incident nodes than that connects it with a higher
edge-weight, we must repeat the procedure again. This is repeated until
two nodes are found, that connects with the mutually same edge-weight.
We therefore expect that HEM searches through fewer edges than LGHEM
during a coarsening level.

In Figure 31, we have measured the total time for the partitioning. The
results are given relative to the results for HEM, which means that if the bar
is below the baseline, then LGHEM is faster than HEM. We have selected
graph that have a large number of nodes, to decrease the inaccuracy of the
time measurement as much as possible.
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Figure 31: the total execution time for 16-way, 32-way and 64 way LGHEM
partitions relative to HEM partitions for a selected subset of the datasets in
Table 1 where the number of nodes ≥ 100000
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From figure 31 we see that using LGHEM decreases the execution time
for 20% of the cases. Since LGHEM is a more complex heuristic than HEM,
it is not completely clear how LGHEM can be faster than HEM at all.

In Figure 32, 35 and 36 we have measured the execution time for the
three phases (coarsening, initial partitioning and uncoarsening). In Figure
32 we see the execution time used for the coarsening phase.
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Figure 32: the execution time for the coarsening phase

We see that using LGHEM during the coarsening phase, makes the coars-
ening a bit slower than using HEM. However, LGHEM is a more complex
method than HEM so we would expect the difference to be larger. When we
consider a node and its incident nodes in LGHEM, we consider often twice
as many as we would for HEM. However, on average the coarsening phase
is only 15% faster when HEM is used as the matching heuristic.

We have found that LGHEM requires less coarsening levels to reach the
coarsening threshold. This can be either because we are unable to reduce
the graph by less than 10% between two coarsening level, or that matching
ratio is higher. We have found that the number of nodes in the coarser
graph is consisently lower when LGHEM is used, which indicates that it has
a higher matching ratio.

Why does LGHEM have a higher matching ratio than HEM? From [4]
we see that RM has a higher matching ratio than HEM. We know from
[17] that HEM creates a coarser graph with lower edge-weight than RM.
From edge-cut analysis in Section 4.3.1 we know that coarsest graph where
LGHEM is used have a lower edge-weight than HEM. However, yet the
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matching ratio is higher for LGHEM than for HEM. We would expect it to
be the other way, since it created a coarser graph with a lower edge-weight,
we would expect that this was parallel to RM and HEM, so HEM had a
higher matching ratio than LGHEM.

However we have found that LGHEM on average matches edges where
the endpoints have smaller set of neighbours than HEM. This is logical,
because if we search through the graph for two nodes with mutually maximal
edge-weight, it is likely that we will end up with an incident node with a
lower set of neighbours(from the reasoning about LGHEM in the previous
chapter). This again makes a multinode with a smaller set of neighbours,
which again does not block future matchings. This gives the coarser graph
produced by LGHEM a smaller and smaller degree and a smaller set of
neighbours. This allow LGHEM to search through fewer edges in order to
find two mutually maximal weighted edges.

In Figure 33 we have done the following for wave: Each time we consider
an edge we increase a counter by 1. We divide this number by the number
of edges in the graph.
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Figure 33: The number of edges searched per coarsening iteration for wave

We see from Figure 33 that to begin with LGHEM consider much more
edges than HEM. However at the same time we see from Figure 34 that
LGHEM has a higher matching ratio. After the coarsening level 4, the
average set of neighbour have decreased significantly. The result can be
seen in Figure 33, where the number of searches start to decrease.

For the final coarsening levels, we see that the number of searches in-
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Figure 34: The matching ratio for wave

creases for HEM. Infact, we see that it almost reaches the upper number of
searches it can possible do (|E|). At the same time the number of searches
decrease for LGHEM, almost reaching the upper number of searches of HEM.

For the initial partition, we see that partitioning the coarser graphs
produced by LGHEM generally are faster than if they are produced by
HEM. 7. This is reasonable, since we have seen that LGHEM produces
smaller graphs (in terms of edges and nodes) than HEM.

For the uncoarsening phase and refinement, we see from Figure 36 that
if LGHEM have been used for coarsening, then less time is spent refining the
graph. This can also be seen in the analysis from the edge-cut in Section
4.3.1, where we see that coarser graph where HEM has been used, tends
to have a larger set of neighbours. This increases the ability to refine the
partition (i.e. makes it possible to perform more moves).

By examining the three phases, we see that it is not unatural that the
difference between the two heuristics are so low.

4.4 Comparing LGHEM to GGHEM

In this section we compare the difference between the edge-cut and load
imbalance when using GGHEM and LGHEM. Since our implementation
of GGHEM requires three different stages (datastructure building, sorting

7Since the initial partitioning is very fast, there could be a result of inaccuratcy of the
measurements

41



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

w
av

e

m
14

b

fe
_o

ce
an

au
to

59
8a

14
4.

gr
ap

h

LG
H

E
M

 e
xe

cu
tio

n 
tim

e 
re

la
tiv

e 
to

 H
E

M
Initial partitioning

16-way (LGHEM)
32-way (LGHEM)
64-way (LGHEM)

HEM (baseline)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

w
av

e

m
14

b

fe
_o

ce
an

au
to

59
8a

14
4.

gr
ap

h

LG
H

E
M

 e
xe

cu
tio

n 
tim

e 
re

la
tiv

e 
to

 H
E

M
Initial partitioning

16-way (LGHEM)
32-way (LGHEM)
64-way (LGHEM)

HEM (baseline)

Figure 35: The execution time for the initial partition for 16-, 32- and 64-way
partitioning
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Figure 36: The execution time for the uncoarsening and refinement for 16-,
32- and 64-way partitioning
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and matching) we also measure the difference in execution time for the two
methods.

4.4.1 Comparing the final edge-cut when using the LGHEM match-
ing heuristic and the GGHEM matching heuristic
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Figure 37: the edge-cut for 16, 32 and 64-way GGHEM partitions relative
to LGHEM partitions for the datasets in table 1.

We have measured from Figure 37 and found out that if using GGHEM
for coarsening, it creates the lowest edge-cut for exactly 51% of the cases. If
GGHEM is used creates the lowest edge-cut, then it is on average 3% lower.
If LGHEM is used, and creates the lowest edge-cut then it is on average 2%
lower.

This indicates that the two heuristics almost gives identical result. The
overall objective of LGHEM and GGHEM is to decrease the edge-weight of
the coarser graph such that it will be easier to find a partition with a low
edge-cut [17]. We have found that LGHEM consistently produces coarser
graphs where the sum of the edge-weights are lower(however, on average
they are no more than 2% lower). This is unexpected. What makes it even
stranger, is that the initial edge-cut, using GGHEM creates a lower edge-cut
for 53% of the cases. However, we would expect LGHEM would create the
lowest initial edge-cut for almost all test cases. Then perhaps the coarser
graph produced by GGHEM had a property such that it was easy to refine
it.
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We have found that the reason why there are fewer edges for LGHEM
than for GGHEM, is that GGHEM has a much higher matching ratio than
LGHEM. By measuring the coarsening levels, we found that GGHEM usu-
ally uses 1 coarsening level less than LGHEM to reach the coarsening thresh-
old. This means that the coarser graph where GGHEM is used have almost
twice as many edges. As we have seen above, the edge-weight is higher for
GGHEM, which is logical since we use less coarsening levels. But we also
note that it is on average only 2% higher.

However, we know that the edge-weight is consistenly lower when LGHEM
is used. We also know that the set of neighbours is smaller for the coarser
graph produced by GGHEM than for LGHEM. From the experiments with
HEM and LGHEM heuristic, we saw that the larger set of incident nodes
and the larger number of uncoarsening levels where important for HEM in
order to decrease the edge-cut. GGHEM has none of these properties, it
has a higher sum of edge-weights, a smaller number of incident nodes and
fewer coarsening levels than LGHEM. In addition we known the the initial
edge-cut for GGHEM is lower than the final edge-cut. From this we can
conclude that there is a difference between a large number of edges with a
low edge-weight and a small number of edges with a higher edge-weight.

4.4.2 Comparing the load imbalance when LGHEM and GGHEM
is used as the matching heuristic

In Figure 38 we see the difference in load imbalance between LGHEM and
GGHEM.

4.4.3 Comparing the execution time of LGHEM and GGHEM

GGHEM consists of three parts; building the edge datastructure, sorting
the edges according to their weight and creating a maximal matching. The
complexity of this operation is O(E) + O(E × log(E)) + O(E). However
complexity analysis says more about the upper (and often unlikely) bounds.

We would expect that the edge building part is slower than the matching
part, even though they have the same complexity. This because, we have
to consider all the edges in order to build a datastructure, but we might
get away with considering less edges in the matching part, since previous
matchings block future matchings.

We expect tthe sorting part to be slower than building the datastructure
and creating a maximal matching, since we atleast must consider all the
edges in order to sort them(how else would we know if they were sorted).

We have measured the time for the three parts, and found out that the
time is divided among the three parts the following way: Building datas-
tructure = 35%, sorting the edges = 48% and creating a maximal matching
= 17%. We also see that this is reasonable. To build a datastructure we
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Figure 38: the 16-way, 32-way and 64-way load imbalance of partitions
where GGHEM has been used relative to cases LGHEM have been used as
the matching heuristic for the datasets in Table 1

must consider every edge . On the other hand, to create a maximal match-
ing, we only have to count the endpoints processed. If all the endpoints are
processed, we know that there is no point searching further for any edges to
be included in the matching. Since there are likely that there are more edges
than nodes (i.e endpoints) then it is likely that it we will find a maximal
matching before we have considered all the edges. It is also reasonable that
the sorting is the part that requires the most time, since we must consider
more than all the edges. Then it is logical since the sorting is slower than
the datastructure building and the maximal matching.

We see from Figure 39 that overal execution time is higher when GGHEM
is used. LGHEM has an unfair advantage, since we do not need to build a
datastructure for each coarsening level. However we have found that if we
multiply the execution time of GGHEM by 1 − 0.35 (since we found that
the datastructure represent 35% of the execution time) then LGHEM still
is on average 20% faster than GGHEM.

It is not unreasonable that LGHEM is faster than GGHEM, however
we recall from the analysis of LGHEM and HEM, than for certain cases
LGHEM uses less overall execution time than HEM. Then it seems unfair
that the difference between GGHEM and LGHEM isn’t larger. We have
explained this the following way:

First, if we count the number of edges considered like we did in Figure
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Figure 39: The total execution time of GGHEM relative to LGHEM.

33, we have found out that in the beginning LGHEM considers much fewer
edges than GGHEM (Figure 41). But as the number of coarsening levels
increase, so does the number of edges LGHEM considers. As seen in Figure
41, GGHEM only needs to consider more edges than LGHEM for the first
coarsening level.

In the edge-cut analysis, we saw that GGHEM used fewer coarsening lev-
els to reach the coarsening threshold. We also saw (as a consequence of fewer
coarsening levels) that the average number of incident nodes where smaller
for the coarser graph produced by GGHEM than LGHEM. In the analysis
where we compared LGHEM and HEM, we saw that a larger number of
incident nodes and a larger number of coarsening levels, were important in
order to be able to refine the graph efficently. Since coarser graphs pro-
duced by GGHEM doesn’t have those properties, we found that we needed
to spend less time refining than LGHEM.

In Figure 41, we see that difference between the time spent on refining
is generally lower for GGHEM than for LGHEM.

4.5 Comparing LGHEM and GGHEM to the graph parti-
tioning archive (GPA)

The graph partitioning archive [29] is an collection of 2-way,4-way,8-way,16-
way,32-way and 64-way partition vectors with the lowest known edge-cuts
for a series of popular graphs.
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GGHEM.
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Figure 41: Execution time for refining the graph.

The archive is organised into four categories, partitions with a 0%,1%,3%
and 5% load imbalance. Let Pmax be the maximal weighted subset of a given
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Figure 42: The graph partitioning archive website.

partition. Then the partition fits into the 3% category if d|N |/k × 1.03e ≥
Pmax.

We have tested the partitions found by GGHEM and LGHEM against
the existing results in GPA. To do this we have done the following; First we
check if our load imbalance is small enough to compare it to one of the four
categories. If our load imbalance is higher than 5% we simply disregard the
result.

We found two new partitions with a lower than the existing edge-cuts,
within the constraints of the load imbalance and several with the same edge-
cut and the same load imbalance but where the partitions differs from those
found in GPA

4.5.1 Comparing LGHEM to GPA

For LGHEM, 21% of the tests failed to find a partition that had a load
imbalance smaller or equal to 5%. We found that if we find an edge-cut
within the categories, then it has at most a 56% higher and 1% lower edge-
cut than those found in the archive.
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LGHEM produces an edge-cut that is equal to those found in GPA for
five of the datasets, and on average, the results produced by LGHEM (count-
ing those cases in which we where unable to create a imbalance lower than
5%) is 31% higher edge-cut than the results found in GPA.On average the
difference between the load imbalance of GPA and the one found in parti-
tions produced by LGHEM are very small (around 0.53%).

The difference between the load balance is obviously much smaller than
the difference between the edge-cut. Since GPA is categorized by the load
balance, we can at most (except for those cases that we did not include
because they had a load imbalance higher than 5%) to be 2%.

The interesting part is obviously to look at edge-cut and load imbalance
together. We see that for the 4-way partitioning of m14b the edge-cut when
LGHEM is used was lower than the edge-cut in GPA. However we see that
the load imbalance is higher than the one found in GPA.

A closer look reveals that m14b has an edge-cut equal to 13844, and that
the maximal partition weight is equal to 53971. The best known found in
GPA, produced by Chaco2.0 software [13] has an edge-cut equal to 14013
and a maximal partition weight equal to 53692. Clearly the result in GPA
have a lower maximal weight, but our result is still within the boundary of
1% imbalance, since d214765/4e × 1.01 = 54229 > 53971

We have also found that a 2-way partition of fe 4elt has the same edge-
cut and the same load imbalance8 as the one found in GPA. However, by
looking at the partition vector against the partition vector from GPA we
have found that it is not the same solution.

4.5.2 Comparing GGHEM to GPA

When using GGHEM as the matching heuristic, we are unable to find a
partition with a load imbalance lower or equal to 5% 28% of the times. We
found that if we find an edge-cut within the categories, then it has at most
a 72% higher and 1% lower edge-cut than those found in the archive

We have found 2 partitions with lower edge-cut than GPA, and 5 parti-
tion with an edge-weight equal to the ones in GPA.

Looking at the edge-cut together with the load imbalance, we see that
there are two cases where the edge-cut was lower than the result found in
GPA: data and auto. For data we find an edge-cut which is equal to 1997,
which is 7 lower than for the entry in GPA. However by a closer inspection
we see that the load imbalance isn’t 1% (it is 1.01%), so it doesn’t fit into
the 1% category in GPA. For the 3% category we see that the edge-cut is
1970 which is 27 lower than the edge-cut we found.

For the auto dataset, we found a 8-way partition with lower edge-cut
and a lower imbalance for the upto 3% category. The edge-cut is 48329 and

8There is only one entry for the four categories.
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the heaviest weighted subset of the partition is 57712, where the results in
GPA is 48398 and 57769, which was found by Iterated Jostle [28].

We also found identical edge-cut for cti with 1% imbalance (originally
found by Joustle Evolutionary [27]) but with a different partition vector.
Just like LGHEM, we found a partition of fe 4elt with the same edge-cut
and load imbalance as LGHEM and GPA. (however, the partition vector is
different from both the one found by LGHEM and the one found in GPA).

Apart from the discovery of two new partitions, the results above gives
us new evidence to the difference between the two heuristics, LGHEM and
GGHEM.

We found that using LGHEM finds partitions that comes closer to GPA
in terms of edge-cut and load imbalance than GGHEM. We can say this,
since LGHEM finds more partitions that fits into the four categories. Also
we note that if we find a partition in categories, it is on average 1% lower
for LGHEM than GGHEM.

However, we found the number of cases where GGHEM creates a edge-
cut that is lower or equal to GPA more often than LGHEM(recall that
GGHEM found two partitions with a lower edge-cut and two partitions
with indentical edge-cut). We could also argue that the partition found by
GGHEM is more valueable than the partition found by LGHEM. auto has
twice as many edges and nodes as the m14b. The partition of auto is a
solution that creates a lower edge- cut and a lower imbalance than the one
found in GPA, while the m14b vector only creates a lower edge-cut, the load
imbalance is higher than the one found in GPA(but it is still within 1%
category).
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5 Conclusion & future work

5.1 Conclusion

In this masterthesis we have studied the multilevel k-way graph partitioning
scheme. The idea is the following; We make smaller and smaller graphs.
Once the graph is significantly smaller a k-way partition is found, then the
graph and the partition is projected back to the original size.

To make the graph smaller, we combine nodes and edges, this is done
with a matching heuristic. We have made one such heuristic, global greedy
heavy edge matching based on another heuristic called local greedy heavy
edge matching. We have inserted both into the Metis [20] graph partitioning
software. Then we have measured the quality of the partitions by using the
two heuristics compared to one of the heuristics already used in Metis.

We have found that the modifications we made to the graph partitioning
software often resulted in high quality partitions, with low edge-cut and a low
load imbalance. For local greedy heavy edge matching, we found that even
though the heuristic is much more complex than already existing heuristics,
using it did not increase execution time significantly. We also found out that
global greedy heavy edge matching seems to produce better result than local
greedy heavy edge matching but with the cost of higher execution time9

We found that the objective presented in [17], that minimizes the edge-
weight of the smaller graph yields a low edge-cut for the initial partition.
However, for the final partition there seems to be other factors as well: For
instance if the matching ratio is low, then a large number of incident nodes
and low edge-weight is important . If the matching ratio is high, then it
seems that a large number of edges with a low edge-weight is important.

We have found two new entries to the graph partitioning archive [29],
by using global greedy heavy edge matching and local greedy heavy edge
matching.

5.2 Future work

In section 3.2.7 we explain how we implemented the GGHEM algorithm
so that it works with a CRS datastructure. It is divided into three parts,
building up a datastructure of edges, sorting the edges and making a maxi-
mal matching of the edges. Below is one suggestion on how to decrease the
execution time of the GGHEM matching heuristic.

5.2.1 Improved sorting

We present an idea to an alternative approach to sorting the edges, which
only requires O(E), given that the edge-weights are integers. It is inspired

9We give guidelines on how to solve this in the next section.
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by the bucket sort scheme [30]. The algorithm works the following way:
We start by finding the heaviest edge-weight ew. This can be done two
different ways. We can either search through all the edges to find it, or we
can calculate one edge with a maximal possible weight. Recall Figure from
chapter 2. We see that the maximal possible edge-weight after a coarsening
level, is 4× the maximal edge-weight from the previous coarsening level.

Declare a list L, where |L| = ew. Set every element in this list to 0. Then
we go through each edge, find its edge-weight and increase L[edge− weight]
with one. We can see an example of such a list in Figure 43
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Figure 43: Sorting the edges

We declare a list Es which contains the sorted edges. The next step is
to modify L so it will serve as a lookup table when we insert the edges into
Es. We start by setting t = 1. Then we go through the list L from top to
bottom (See Figure 43). If we at a certain position p and that L[p] 6= 0, then
we do the following: L[p] is the number of edges with a certain edge-weight.
Then this will require that we allocate L[p] places in Es for the edges with
this weight. (See Figure 43). More specifically do the following: If L[p] 6= 0,
then t2 = L[p], then we set L[p] = t.Then t = t2, and do this until we reach
the end of the list.

Once we have modfied L, then we go through all the edges in the graph.
We select one edge e and we access its edge-weight by w(e). This edge
should be placed in position Es[L[we]] = e. Once the edge has been placed,
then we increase L[we] by 1. Es will then be sorted once we have considered
all the edges.

Even thought this idea has a lower complexity than introsort [23] which
we currently uses, there are one uncertain factor. What will the size of L
be? It is possible the L could have many empty slots, is it possible that the
size of L will be so large than it will use more time than using introsort?
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